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ABSTRACT

This work considers the task of estimating the source and filter from

human voice signals. Since the energy of voiced sound concentrates

on discrete frequencies, a notable challenge with this task would be

that higher pitches in the signal can make the harmonically related

frequency response samples of the vocal tract filter an incomplete

representation. In view of this, we propose to model the magnitude

and phase response of the first formant as an alternative to the mini-

mum phase property of the vocal tract filter. In particular, the magni-

tude response of the vocal tract filter sampled at the first three partials

only, is sufficient for determining the phase response of the first for-

mant. We verified our new method with glottal pulse shape param-

eter estimation experiments conducted on the CMU Arctic dataset,

which showed that single-formant filter is an adequate alternative to

minimum-phase filter in vocal tract modeling for glottal pulse shape

estimation.

Index Terms— Vocal tract filter, Liljencrants-Fant model, for-

mant, phase, glottal pulse shape

1. INTRODUCTION

Human voice exhibits a wide range of timbres. In the first place,

the various vowels pronounced by an individual can be deemed as

different timbres. Second, vocal timbres can also vary greatly among

speakers or singers. Thirdly, a particular range of pitches may be

sung by a male singer at some times as modal voice, and as falsetto

voice [1] at other times.

A pitch-independent timbral representation of human voice is

attractive for several reasons: To begin with, such a representation

could be so closely related to vowels as to underlie a speech recogni-

tion or lyric alignment system. Secondly, it could also be applied to

speaker or singer identification, where speakers or singers are iden-

tified according to specific personal voice qualities found in record-

ings. Third, falsetto detection is also a possible application of such a

timbral representation. Finally, with an appropriate resynthesis pro-

cedure, the representation could support pitch transformation of hu-

man voice that preserves the vocal timbre.

This work aims to develop a system that estimates the source

and filter from human voice signals, where the resulting source-filter

model will serve as a pitch-independent timbral representation of

the analyzed human voice. As shown in Figure 1, the input to the
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Fig. 1. The objective of this work.

system is a human voice signal, and the desired output of the system

includes the glottal pulse shape and the vocal tract filter.

The human voice signal is, by nature, an air pressure signal at

the ears of the listener that depends on the particular airflow at the

speaker’s or singer’s lips. It is common practice in acoustic phonetics

[2] to model the relation between the airflow signal at the glottis and

that at the lips by a linear system, which we call the vocal tract

filter. In this model, the airflow signal at the lips is represented by

the signal resulting from passing the glottal airflow signal through

the vocal tract filter. Moreover, the vocal tract filter varies with vowel

and with speaker/singer.

Fig. 2. Voice production model.

The dependency of the human voice signal on the airflow at the

lips can be modeled by a differentiator [2], as depicted in Figure 2.

Since linear systems commute, we have an alternative model, the

source-filter model, for the production of human voice, as shown

in Figure 3. In the source-filter model, the derivative of the glottal

airflow signal, which we call the glottal source signal, goes through

the vocal tract filter to give the human voice signal. The shape of

glottal source signal is an essential determinant of voice quality; for

example, the shape has been shown to differ significantly between
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modal and falsetto registers [1].

Fig. 3. Source-filter model.

The task of source-filter analysis of human voice signals, as de-

tailed above, is challenging in that only extremely limited informa-

tion is available from the observed signals. For any given fundamen-

tal frequency of the voice, only the harmonic frequency components

in the voice signal provide clues for the analysis, while all other fre-

quency components are invariably zero in the absence of noise. As a

consequence, it is crucial to take advantage of a priori information,

typically in the form of a source model or a filter model that closely

follows the reality in human voice production with a small number

of parameters, in the analysis. As will be discussed in Section 2, all

existing approaches to source-filter estimation fail to adopt accurate

models for technical reasons.

As will be described in Section 3, we estimate the glottal pulse

shape by sampling the pulse shape space and finding among the re-

sulting pulse shapes the one that, along with the observed human

voice signal, represents a frequency response with the lowest devi-

ation from our vocal tract filter model [3, 4]. This representation

of frequency response is only populated at partial frequencies of the

human voice, and is particularly sparse when the pitch is high. To

measure the deviation from model, one would need a filter model

with a small number of parameters, so that part of the tested fre-

quency response can be used to determine the filter parameters, and

the rest of it can be checked against the filter. To this end, we propose

to model the vocal tract over the first formant frequency range only,

with a three-parameter formant filter. With this filter model fitted to

the tested magnitude response at the first three partials, we measure

the deviation by the phase errors in the tested phase response. Exper-

imental results will be presented in Section 4, providing comparison

with a recent approach that models the vocal tract with a minimum-

phase filter in particular.

2. RELATED WORK

The spectral envelope of audio signal has been used widely as a

pitch-independent timbral representation of the human voice. Exam-

ples of this type of representation include the mel-frequency cepstral

coefficients (MFCC) [5] and linear predictive coding (LPC) [6]. It

can be regarded as a simplified source-filter model where the source

has a fixed, flat spectral envelope, and the overall spectral envelope

represents the frequency response of the filter. This simplification

can be inappropriate for some applications in that a glottal pulse

shape is represented in the frequency domain by some particular am-

plitude ratios among the partials, and its spectral envelope should

actually stretch along the frequency axis as the pitch increases. In

contrast, we represent the glottal pulse shape by a parametric model

from acoustic phonetics.

The estimation of source and filter from singing voice sig-

nals has been investigated in [7], where the glottal pulse shape is

essentially represented by the KLGLOTT88 model, and the vo-

cal tract is modeled by linear predictive coding (LPC). Note that

linear predictive coding implements a discrete-time all-pole filter

with poles not necessarily in complex-conjugate pairs, while the

single-tube resonator is a continuous-time filter characterized by

complex-conjugate pairs of poles [8]. The LPC vocal tract model

also underlies a recent approach proposed in [9]. To ensure the

best possible accuracy in modeling, we adopt the continuous-time

formant filter and the transformed Liljencrants-Fant model in this

work.

Another type of vocal tract model that has been investigated in

the literature is the minimum-phase filter [10, 11, 3, 4]. In [3, 4],

the glottal pulse shape is estimated by sampling the pulse shape

space and finding among the resulting pulse shapes the one that,

along with the observed human voice signal, represents a discrete-

time frequency response with the lowest deviation from the mini-

mum phase. To measure this deviation, it is assumed that the im-

pulse response of the discrete-time vocal tract filter deviates sig-

nificantly from zero only within the first 2Np samples, i.e., it has

an effective duration no greater than 2Np, where Np denotes the

number of partials below the Nyquist frequency. The tested fre-

quency response (which is sampled at partial frequencies) then ap-

proximates the discrete Fourier transform (DFT) of this “finite im-

pulse response,” and determines (with its magnitude) a minimum-

phase filter, against which the tested phase response can be checked.

Even so, the assumption may fail when the impulse response of the

vocal tract filter has a large effective duration, or when the fun-

damental frequency is high. Moreover, even if the partials below

the Nyquist frequency are sufficient for determining the minimum-

phase filter, the higher portion of these partials could have been cor-

rupted by noise or nonstationarity in the signal. In stark contrast, the

single-formant filter adopted here does not involve the validity of the

tested frequency response as a DFT spectrum, nor does it depend on

the higher partials in the signal; in this respect, the proposed filter

model is believed to solve the problems with the minimum-phase

filter model.

3. METHOD

Given a human voice signal represented by the sequence of short-

time spectra {s(i)}Li=1, we perform the estimation of glottal pulse

shape at the corresponding (uniformly spaced) sequence of time po-

sitions in the signal, {ti}Li=1, with a frame rate equal to the minimum

fundamental frequency in the signal. To limit our exploration in the

pulse shape space to a finite number of pulse shapes, we sample

the space in advance, giving the set of pulse shape parameter values

Γ = {γm}Ns

m=1. For each analysis time position ti, we find the pulse

shape R̂
(i)
d that, along with the observed human voice spectrum s

(i),

represents a frequency response with the lowest deviation from our

vocal tract filter model:

R̂
(i)
d = arg min

Rd∈Γ
D
(

Rd, s
(i)
)

, (1)

where D (·) measures the deviation.

3.1. Sampling the Space of Glottal Pulse Shapes

The glottal source signal can be approximated by the transformed

Liljencrants-Fant model, which is a three-parameter signal model

[12, 7]. The three parameters are the fundamental period T0, the

closure excitation magnitude Ee, and the pulse shape parameter Rd.
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The model has the following form:

g(t;T0, Ee, Rd) =
{

E0e
αt sin(ωgt), 0 ≤ t ≤ Te;

− Ee

ǫTa
[e−ǫ(t−Te) − e−ǫ(T0−Te)], Te ≤ t ≤ T0,

(2)

where t denotes the time in seconds, and the dependent variables E0,

α, ωg , Te, ǫ, and Ta can be derived as functions of (T0, Ee, Rd).
Since T0 and Ee have no effect on the pulse shape, we let the space

of glottal pulse shapes be represented by {Rd : 0.3 ≤ Rd ≤ 5.5}
and assume T0 = 1 and Ee = 1 throughout the rest of this paper.

The upper limit of an Rd value is 2.7 in standard transformed LF

model; here, the raised value of the limit depends on the extension

formulas given in [4]. Moreover, when the values of T0 and Ee are

fixed, Rd is mapped to Te by an invertible function.

As for the sampling, we let γ1 = 0.3 and γNs
= 5.5. The

intermediate values γ2, · · · , γNs−1 are such that the open quotient

values (Te/T0) corresponding to Rd = γ1, · · · , γNs
form a uniform

sampling in the open quotient space.

3.2. Measuring the Deviation From Vocal Tract Model

As formulated in (1), we estimate the pulse shape by optimizing an

objective D(·) over the set of pulse shapes Γ. Each shape hypothesis

Rd implies a frequency response of the vocal tract filter that remains

to be validated. We test the validity of the frequency response by

measuring its deviation from our vocal tract filter model.

3.2.1. Tested Frequency Response

As the first step in the procedure of deviation measurement, a har-

monic representation of the human voice signal is extracted from the

observed spectrum s
(i). To this end, we estimate the fundamental

frequency contour with a monophonic version of the pitch estima-

tor in [13], which gives a pitch estimate for each unvoiced or silent

time position as well as each voiced time position. Let the com-

plex spectrum values interpolated at the first 3 partials be denoted by

Y1, Y2, and Y3. With the observed signal regarded as the output of

a filter and the glottal source signal (as specified by the hypothesis

Rd) regarded as its input, the frequency response of the filter can be

calculated at the 3 partials:

Hp =
Yp

Xp

, p = 1, 2, 3, (3)

where X1, X2, and X3 denote the corresponding Fourier coefficients

of the glottal source signal specified by Rd.

3.2.2. Vocal Tract Filter Model for Low Frequencies

For the true vocal tract filter, we assume that its frequency response

is primarily shaped by the first formant at the first 3 partials, with

all other formants or anti-formants located far above the 3 partials.

Consider the frequency response of the continuous-time formant fil-

ter [2]:

H(ω; c, σ0, ω0) =
c

[jω − (σ0 + jω0)][jω − (σ0 − jω0)]
, (4)

where ω is the angular frequency in radians per second, c > 0 is a

gain factor introduced to compensate for the fixed value of Ee in the

source model, σ0 < 0 controls the bandwidth, and ω0 is the formant

frequency. Its magnitude and phase are given by

|H(ω; c, σ0, ω0)| =
c

√

(ω2 − ω2
0 − σ2

0)
2 + 4σ2

0ω
2
, (5)

and

6 H(ω; c, σ0, ω0) =










− arctan −2σ0ω

σ2

0
+ω2

0
−ω2

, if ω2 < σ2
0 + ω2

0 ;

−π
2
, if ω2 = σ2

0 + ω2
0 ;

−π + arctan −2σ0ω

ω2−σ2

0
−ω2

0

, if ω2 > σ2
0 + ω2

0 .

(6)

When ω2 ≪ σ2
0 + ω2

0 , we have

|H(ω; c, σ0, ω0)| ≈
c

ω2
0 + σ2

0

, (7)

and

6 H(ω; c, σ0, ω0) ≈
2σ0ω

σ2
0 + ω2

0

, (8)

which means that the effect of higher formants or anti-formants on

the overall frequency response at the first 3 partials can be approxi-

mated by a linear-phase all-pass filter. Therefore, we can reasonably

model the vocal tract with the single-formant filter for the first 3 par-

tial frequencies.

3.2.3. The Deviation

To measure the deviation of the tested frequency response (3) from

the single-formant filter (4), we fit the filter to the tested magnitude

response, and evaluate the phase errors in the tested phase response

with respect to the fitted filter.

To fit the single-formant filter to the tested magnitude response,

we solve the following system of equations:

|H(ωp; c, σ0, ω0)| = |Hp|, p = 1, 2, 3, (9)

where ωp denotes the angular frequency of the pth partial. A solution

exists if and only if cs, As, and B are all positive and B <
√
As,

where

cs =
p1,2 − p1,3
q1,3 − q1,2

, (10)

p1,2 = ω2
1ω

2
2 , (11)

p1,3 = ω2
1ω

2
3 , (12)

q1,2 =

ω2

1

|H2|2
− ω2

2

|H1|2

d1,2
, (13)

q1,3 =

ω2

1

|H3|2
− ω2

3

|H1|2

d1,3
, (14)

d1,2 = ω2
1 − ω2

2 , (15)

d1,3 = ω2
1 − ω2

3 , (16)

As = p1,2 + q1,2cs, (17)

B =

cs
|H1|2

− (ω2
1 −

√
As)

2

4ω2
1

. (18)

The solution is

c =
√
cs, (19)

σ0 = −
√
B, (20)

ω0 =

√√
As −B. (21)

Note that the 3 positivity conditions ensure that the fitted filter has

real coefficients, while the other inequality condition ensures that the

poles are complex conjugates of each other.
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Table 1. Experimental results in Pearson’s r coefficient.

Once the formant filter is fitted to the tested magnitude response,

we can check the tested phase response against the fitted filter. Since

the glottal closure instant is unknown, there is an unknown linear-

phase bias in the Fourier coefficients {Xp}3p=1 with respect to the

true glottal source signal. In addition, there is an unknown linear-

phase bias in our vocal tract model because higher formants or anti-

formants are not included in the model. As a result, a tested phase

response that deviates from the phase response of the fitted filter by

an amount proportional to frequency would indicate that the tested

frequency response is perfectly valid for a vocal tract filter. This jus-

tifies the measurement of deviation by the nonlinearity in, instead of

the magnitude of, the phase errors found in the tested phase response

with respect to the fitted filter [4]:

D
(

Rd, s
(i)
)

=










2
∑

l=0

1

3

3
∑

p=1

(

∆−l∆2 6 Rθ
p

π

)2

, fitting successful;

3, otherwise.

(22)

Here ∆−l denotes the lth-order antidifference operator, ∆2 denotes

the second-order forward difference operator, Rθ
0 = 1, and

Rθ
p =

Hp

H(ωp; c, σ0, ω0)
, p = 1, 2, 3. (23)

4. RESULTS AND DISCUSSIONS

4.1. Test Data

To collect human voice data for testing a source-filter estimator, it

would be desirable, if not impossible, to record the glottal airflow

in addition to the sound pressure radiated from the lips, so that the

ground-truth pulse shape could be obtained directly from the airflow.

In practice, it is virtually impossible to measure the airflow through

one’s vocal folds, and the feasible measurement is the electroglotto-

graph (EGG) [14]. We test our glottal pulse shape estimator on the

CMU Arctic dataset [15], which contains both EGG measurements

and acoustic recordings of the speech of two male subjects (BDL

and JMK) and one female subject (SLT). The speech of each subject

is composed of two parts (part A and part B), each part made up of

about 500 phrases. The open quotient of glottal pulse is estimated

from the EGG measurements with the DECOM method [16] as a

function of time, which serves as the ground truth of glottal pulse

shape.

4.2. Performance Measure

In our experiments, some of the time positions {ti}Li=1 are voiced,

while the others are unvoiced or silent. We perform voicing detec-

tion by detecting glottal closure instants (GCIs) with the SIGMA al-

gorithm [17]. After linear interpolation on a 250-hertz time grid, the

pulse shape estimates within each voiced segment are converted to

open quotient values and compared with the EGG-derived open quo-

tient values within the voiced segment with Pearson’s r coefficient.

An average r coefficient, weighted by segment length, is calculated

over all the voiced segments in a phrase.

4.3. Comparison With Minimum-Phase Filter

Tests of the proposed estimator gave an average correlation coef-

ficient, unweighted among phrases, for each part in the testset, as

listed in the row “F1” in Table 1. Here, the performance varies

widely among different speakers, with the average r coefficient ex-

ceeding 0.6 for speaker BDL, and below 0.3 for speakers JMK and

SLT. To investigate the effect of vocal tract model on the perfor-

mance, we repeated the tests for a variant of the estimator that re-

sulted from substituting the minimum-phase filter [4] for the single-

formant filter, which gave the results in the row “Min-φ” in Table

1. For both methods, the correlation coefficients are much lower

for speakers JMK and SLT than for speaker BDL. The advantage

of the single-formant filter over the minimum-phase filter could be

observed from the results for speaker BDL, where the minimum-

phase filter gave an r coefficient close to 0.5 on average. Note that

the minimum-phase filter outperforms the single-formant filter for

speaker JMK. Inspection of the spectrogram of a phrase from the

speaker showed that the third partial of the voice is often so weak

that no reliable sinusoidal parameters can be extracted from it. Since

only 3 partials are used in fitting the single formant filter, any cor-

rupted partial in the three can have a dramatic impact on the estima-

tion.

5. CONCLUSION

A low-frequency-band vocal tract filter model for glottal pulse shape

estimation has been presented. The model has only 3 parameters and

can thus be uniquely determined by filter gain values at 3 different

frequencies. Since only a small number of spectral observations are

available for glottal estimation from a high-pitched voice signal, this

model is believed to be particularly suitable for analyzing female

or singing voice signals. Experiments on speech data show that the

proposed model yields pulse shape estimates that are as accurate as

those obtained with the minimum-phase filter model. In the future,

it would be interesting to evaluate the performance of the estimator

on singing voice data.
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