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ABSTRACT 

 

Although a number of speech disorders reflect varying 

involvement of brain areas, recently published automatic 

speech analyses have primarily been limited to hypokinetic 

dysarthria in Parkinson’s disease (PD). Therefore, the aim of 

the present study was to provide an automatic algorithm 

suitable for the assessment of voice onset time (VOT) in 

various dysarthria types. Twenty-four PD participants with 

hypokinetic dysarthria and 40 Huntington’s disease (HD) 

subjects with hyperkinetic dysarthria were included. These 

two types of dysarthria were selected in the design of a 

robust algorithm as they contain most of the dysarthric 

patterns found among all dysarthria subtypes. For a 10 ms 

threshold, the proposed algorithm reached approximately 

90% accuracy in PD speakers and 80% accuracy in HD 

speakers. The accuracy of 80% obtained in HD was superior 

to the performance of 55% achieved by a previous algorithm 

designed particularly for hypokinetic dysarthria in PD. 

 

 

Index Terms— Voice Onset Time, Dysarthria, 

Parkinson’s disease, Huntington’s disease, Speech disorder 

 

1. INTRODUCTION 
 

Neurodegenerative

 disorders are associated with the 

progressive damage of nerve cells and motor complications 

represent one of the most severe sequelae in the lives of 

patients. Parkinson’s disease (PD) and Huntington’s disease 

(HD) represent two well-known neurodegenerative 

disorders associated with various motor disruptions. 

Although both diseases primarily affect the basal ganglia, 

their differing mechanisms lead to contrasting effects on 

patient motor performance [1, 2]. Dopamine depletion in the 

course of PD leads to bradykinesia, muscular rigidity, gait 
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instability and a 5 Hz resting tremor, whereas HD primarily 

leads to chorea characterized by extensive semi-directed, 

non-rhythmic movements [1, 2]. The motor speech disorder 

termed dysarthria is common to both PD and HD. In PD, 

hypokinetic dysarthria may be characterized by an increased 

rate of speech, monopitch, monoloudness, hypophonia and 

reduced stress [3]. The manifestation of hyperkinetic 

dysarthria in HD, in contrast to hypokinetic dysarthria, 

includes the presence of slow rate, excessive pitch, 

excessive loudness, excessive and equal stress, variable rate, 

inappropriate voice breaks and audible inspirations [3]. 

Together, these dysarthria subtypes encompass the majority 

of speech patterns appearing across all types of dysarthria, 

and therefore provide a suitable model for the development 

of robust automatic methods for the assessment of various 

types of dysarthria.  

 Although dysarthria is primarily an articulatory 

disorder, previous studies have mainly focused on automatic 

assessments of sustained phonation [4]. Recently, the 

automatic assessment of articulatory disorders has also been 

introduced [5]; however, it has been limited to hypokinetic 

dysarthria due to the relatively high incidence of PD. To the 

best of our knowledge, there is no tool available for the 

automatic assessment of speech disorders applicable to 

different dysarthria subtypes. 

Voice onset time (VOT) represents a common 

method for the evaluation of articulatory deficits in the 

course of different types of dysarthria [6]. VOT is used as a 

marker of laryngeal and supralaryngeal coordination [7]. 

The diadochokinetic (DDK) task is particularly suitable for 

the assessment of VOT as it is based on fast, steady syllable 

repetition, which is a demanding task for dysarthric patients. 

Accordingly, participants perform utterances at their 

maximal speed and are not able to voluntarily compensate 

articulatory deficits. The commonly used DDK task, the 

repetition of /pa/-/ta/-/ka/ syllables, combines bilabial, 

alveolar and velar places of articulation. 

Therefore, goal of the present study was to develop 

a robust algorithm for automatic VOT estimation applicable 

to different dysarthria subtypes and to demonstrate its 

applicability by evaluating PD and HD speakers.  
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2. METHODS 

 

2.1. Subjects 
 

Hypokinetic dysarthria was represented by 40 utterances of 

24 participants (20 men and 4 women) who fulfilled the 

diagnostic criteria for PD [8]. The mean age of the PD group 

was 60.1 ± standard deviation (SD) 12.6 years. All PD 

participants were assessed by a specialist using the Unified 

Parkinson’s Disease Rating Scale (UPDRS) [9]; the mean 

UPDRS score was 17.4 ± SD 7.1. The PD utterances were 

originally collected as part of a previous study [10].   

Hyperkinetic dysarthria was represented by 77 utterances 

from 40 speakers (20 men and 20 women) diagnosed with 

HD. The mean age of the HD group was 48.6 ± SD 13.4 

years. All HD participants were assessed by a specialist 

using the Unified Huntington’s Disease Rating Scale 

(UHDRS) [11]; the HD group obtained a UHDRS motor 

score of 26.9 ± SD 11.6. The HD utterances were originally 

collected as part of a previous study [12]. 

 

2.2. Recording 

 

Recording took place in a quiet place with low ambivalent 

noise using a condenser microphone at a distance of 

approximately 5 cm from the subject’s mouth. Data were 

recorded with a 48 kHz sampling frequency and 16 bit 

quantization. All participants were recorded during a single 

session by a speech-language pathologist who instructed 

them to perform rapid /pa/-/ta/-/ka/ syllable repetitions as 

consistently and rapidly as possible. No time limits were 

imposed and participants could repeat the task. 

 

2.3. Labeling 

 

In order to evaluate algorithm performance, manually-

placed labels for the initial burst and vowel onset were used 

as reference positions. However, manually labeling 

dysarthric speech may be a challenging task and therefore 

two labeling rules were set in compliance with previously 

established guidelines [5]. First, in the case of multiple 

bursts, the first burst was set as the initial burst of 

consonants [13]. Second, vowel onset was defined by the 

presence of the fundamental and first two formant 

frequencies [14]. 

 

2.3. Algorithm 
 

The VOT is defined as the difference between the initial 

burst and vowel onset [15] (see Fig. 1). Therefore, both 

positions must be detected in each syllable of the utterance. 

Nevertheless, the unknown number of syllables makes any 

segmentation difficult and therefore each utterance was first 

segmented into single syllables.  

 
Fig. 1. Syllable /pa/ pronounced by HD speaker and the 

highlighted area of VOT and its borders including the initial burst 

and the vowel onset. Section (a) represents the time domain, 

whereas section (b) represents frequency domain. 

Even though the recently presented algorithm showed 

sufficient robustness in hypokinetic utterances it was prone 

to highly variable rate caused by forced inspirations and 

expiration present in HD utterances [5]. Therefore to 

address this aspect of hyperkinetic speech an algorithm 

based on analysis of the linear prediction (LP) residual was 

used for the purposes of rough segmentation [16]. This 

approach uses the LP residual for the detection of voiced 

parts of the utterance. The LP residual was estimated from 

the signal which was down sampled to 8 kHz and filtered by 

a 500 Hz FIR filter with an order of 100. The 500 Hz FIR 

filter removed majority of high frequency signals including 

consonants and inspirations and preserved fundamental 

frequency included in voicing. Subsequently, the Hilbert 

envelope of the LP residual was estimated and smoothened 

by a moving average filter with an order of 500 [16].   

Positions of peaks in the smoothened envelope 

were set as the positions of vowel nuclei. To detect these 

peaks, an envelope slope was computed using the first-order 

difference and every positive to negative zero crossing was 

marked as vowel nuclei. To eliminate false detections due to  

low signal-to-noise ratio or intensity fluctuations along 

single vowels, the minimal distance between two vowel 

nuclei was set to 10 ms. When two peaks were found to be 

within 10 ms distance, the higher peak was selected as 

vowel nucleus (see Fig. 2). 

To detect syllable borders, the local minima of the 

smoothed Hilbert envelope were detected. Subsequently, 

each syllabic nucleus was associated with the nearest local 

minimum. The position of syllable beginning or end was 

determined according to the relative position of local 

minima to the nucleus. The second border was then chosen 

according to this decision.   
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Fig. 2. Detection of syllable nuclei based on [13]. The utterance 

(a) is analyzed using LP residua (b), its smoothened Hilbert 

envelope (c) and slope of this envelope (d).The nucleus positions 

are marked as peaks in (c) and positive to negative crossing in (d). 

 

Signal within these borders was evaluated to 

determine the position of the initial burst. Initial burst 

detection was based on spectral characteristics. First, a 

spectrogram with 6 ms window length was estimated from 

the signal sampled at 20 kHz. Then a filtration matrix T was 

computed according to 

𝐓(𝑖, 1 … 𝑛) = 0.8 
1

𝑛
∑ 𝐏(𝑖, 𝑗),

𝑛

𝑗=1

        (1) 

where i is the index of each frequency bin, n is the number 

of time bins and P is the power spectral density estimation 

matrix. The spectrogram matrix P was than filtered by 

comparison with T as is defined in 

 

𝐏𝒇𝒊𝒍𝒕𝒆𝒓𝒆𝒅 = {
  1      𝑃(𝑖, 𝑗) ≥ 𝑇(𝑖, 𝑗)
  0      𝑃(𝑖, 𝑗) < 𝑇(𝑖, 𝑗)

 .               (2) 

 

The envelope, given by summing all values in each time bin 

in Pfiltered, was used to emphasize widespread bursts over the 

formant frequency centered vowel (see Fig. 3).  

 
 

Fig. 3. Process of the initial burst detection. The syllable (a) is 

processed using filtered spectrogram (b). Then using 

summation along frequency axis the energy envelope (c) is 

computed and the initial burst is detected in the difference (d) 

of this envelope.  

 

The quasi-periodic character of vowels with an 

abrupt onset of energy was detected using a Bayesian Step 

Changepoint Detector (BSCD) [17]. The BSCD assumes the 

signal to be composed of two constant values (e.g., 0.05 and 

0.3 in our algorithm) and computes the a posteriori 

probability of changes in the signal using Bayesian 

marginalization. The character of the BSCD model based on 

two constant values highlights the boundary between two 

different signals (see Fig. 4). 

 

2.4. Algorithm performance estimation 
 

Based on the methods presented by Stouten and Van Hame 

[18], the cumulative distributions of absolute differences 

between reference and automatically detected positions were 

used for the purposes of algorithm performance estimation. 

Additionally, the 10 ms threshold was chosen as the 

representative threshold value with respect to previous 

studies [5, 18]. The cumulative distributions were computed 

using all syllables contained in the PD or HD groups and 

falsely detected or missed syllables were always set as 

erroneous. Cumulative distributions were estimated 

separately for PD and HD participants. 
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Fig. 4. The vowel onset detection is based on processing of signal 

(a), which is squared (b) and modeled using BSCD represented by 

two constant values (b). The vowel onset is detected in BSCD 

output (c). 
 

For the purposes of comparison, data for both 

hypokinetic and hyperkinetic dysarthria subtypes were also 

analyzed by an algorithm designed previously for the 

automatic estimation of articulatory deficits in PD [5]. 

 

3. RESULTS 

 

Figure 5 illustrates algorithm performance. VOT boundary 

detection is illustrated by solid lines, which shows algorithm 

performance using cumulative distributions of absolute 

differences between detected and reference positions. 

Furthermore, for the purposes of comparison, the dashed 

lines in figure 5 represent the performance of an algorithm 

designed previously for PD subjects [5]. Considering a 

10 ms threshold and PD condition, the present algorithm 

achieved a slightly improved score of 81.5% for the initial 

burst and 89.5% for vowel onset, in comparison to a score 

of 78.2% for the initial burst and 88.6% for vowel onset 

achieved by the previous algorithm. Considering a 10 ms 

threshold and HD condition, the present algorithm achieved 

77.8% for the initial burst and 80.1% for vowel onset, 

significantly outperforming scores of 45.8% for initial burst 

and 55.1% for vowel onset achieved by the algorithm 

designed previously for PD subjects. 
 

 
Fig. 5. Cumulative distributions of absolute difference between 

detected and reference values. The results obtained for the Initial 

burst (1st column) and Vowel onset (2nd column) and for PD 

(1st row) and HD (2nd row) speakers. For the purposes of 

comparison, the dashed line represents results of PD-aimed 

algorithm presented in [5]. 

 

4. CONCLUSION 
 

We present a new, automatic algorithm for the estimation of 

VOT in dysarthria. We achieved a high performance score 

of up to 90% in PD speakers and up to 80% in HD speakers 

for a 10 ms threshold. In the case of hyperkinetic dysarthria 

in HD, the current approach was superior to a previous 

algorithm designed particularly for hypokinetic dysarthria in 

PD [5], with increased performance by over 25%. Indeed, 

the previous approaches [5, 18] were not sufficient in the 

evaluation of HD speech as hyperkinetic dysarthria may be 

particularly associated with audible inspirations and 

inappropriate voice breaks, which could affect the detection 

of syllable nuclei and their borders, and therefore leads to an 

increased occurrence of false detections. The robustness of 

the present algorithm to uncontrollable confounding effects 

in HD speech seems very promising for the automatic 

detection of VOT in different types of dysarthria due to 

various neurological conditions. 
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