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ABSTRACT

In this paper, we use unconstrained frequency estimates
(UFEs) from a noisy harmonic signal and propose two meth-
ods to estimate and track the pitch over time. We assume that
the UFEs are multivariate-normally-distributed random vari-
ables, and derive a maximum likelihood (ML) pitch estimator
by maximizing the likelihood of the UFEs over short time-
intervals. As the main contribution of this paper, we propose
two state-space representations to model the pitch continuity,
and, accordingly, we propose two Bayesian methods, namely
a hidden Markov model and a Kalman filter. These methods
are designed to optimally use the correlations in the consec-
utive pitch values, where the past pitch estimates are used to
recursively update the prior distribution for the pitch variable.
We perform experiments using synthetic data as well as a
noisy speech recording, and show that the Bayesian methods
provide more accurate estimates than the corresponding ML
methods.

Index Terms— Harmonic signal, frequency estimate,
pitch estimation, Bayesian filter, Kalman filter

1. INTRODUCTION

Audio signals such as recordings of voiced speech and some
music instruments can be modeled as a sum of harmonics with
a fundamental frequency (or pitch). In practice, these signals
are recorded in the presence of noise, and thus, the clean har-
monic model will be less accurate. As a result, obtaining an
accurate estimate of the pitch in noisy conditions is both chal-
lenging and very important for a wide range of applications
such as enhancement, separation, and compression. Differ-
ent pitch estimation methods have been investigated in [1, 2]
which are based on a harmonic constraint. One common
method to estimate the pitch is through the maximum like-
lihood (ML) framework [3]. In ML methods, consecutive
pitch values are estimated independently, where obtaining a
minimum-variance estimate is guaranteed [4, 5]. However,
the pitch values in a sequence are usually highly correlated,
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which motivates the development of the Bayesian methods to
optimally use the correlations. The Bayesian methods incor-
porate prior distributions, and can be used to derive the mini-
mum mean square error (MMSE) estimator and the maximum
a posteriori (MAP) estimator [6], e.g., [7].

State-of-the-art methods mostly track pitch estimates in a
sequential process, e.g., [8–10]: first, pitch values are esti-
mated in each time-frame, which is a sub-vector of the whole
signal, and then they are smoothed, using a dynamic program-
ming approach such as [11], without considering the noise
statistics. For instance, the method in [8] uses a nonlinear
smoothing method, which is a combination of median and
low-pass filtering, and the method in [9] tracks pitch estimates
based on a hidden Markov model (HMM). However, to obtain
an optimal solution, the estimation and tracking have to be
done jointly. One method that does this is proposed in [12],
which operates in the time-domain and uses a HMM based
system to utilize the temporal correlation. This estimator is
optimal if the noise is stationary with known statistics, while
it is suboptimal in the more practical scenario where the noise
statistics are unknown. A simple method to improve the per-
formance in this scenario is to update the signal and noise
statistics over time using a low-pass filter with exponential
forgetting factor [13].

In this paper, we use the relation between harmonics to
estimate and track the pitch in a harmonic signal. Herein,
we jointly estimate and track pitch incorporating both the
harmonic constraints and noise characteristics. First, we
analytically find an optimal ML pitch estimator in each time-
frame using unconstrained frequency estimates (UFEs)1,
which are the perturbed frequencies of harmonics in Gaus-
sian noise [20]. One of the key contributions of this work is
to transfer the pitch estimation problem with the harmonic
constraints into a state-space representation where the state
equation is designed to model the pitch evolution. Conse-
quently, we can use a state-of-the-art Bayesian method to
estimate the pitch values. We propose a discrete state-space

1UFEs are multiple single-frequency tones, which are the location of
peaks of spectral densities over frequency, assuming that the number of har-
monics are known, e.g. using a method in [14, 15]. Different methods for
estimation of the spectral density have been investigated in [16], e.g., using
discrete Fourier transform (DFT), MUSIC [17], NLS [18], and Capon [19].
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representation, an HMM, using which we develop a MAP
estimator for the pitch. We also propose a continuous state-
space, a Kalman filter (KF), which is used to obtain an MMSE
estimate of the pitch. Both the HMM and KF based methods
utilize the correlations and lead to recursive pitch estimates.

The rest of this paper is organized as follows: In Section
2, we present the signal model, and introduce the ML pitch
estimator. For a sequence of observations, the Bayesian esti-
mators are presented in Section 3. Then, in Section 4, some
experimental results are presented. In closing, the work is
concluded in Section 5.

2. PITCH ESTIMATION

2.1. Signal Model

We model a harmonic signal2, e.g., voiced speech, as a sum
of L(n) sinusoids at the time instance n like

s(n) =

L(n)∑
l=1

αl e
j (ωl(n)n+ϕl), (1)

where ωl(n) = lω0(n), and αl and ϕl are amplitude and ini-
tial phase of each sinusoid, respectively. In the signal sub-
vector s(n) = [ s(n), s(n−1), · · · , s(n−M−1) ]T , we as-
sume that the signal parameters are approximately stationary,
and collect the constrained frequencies like

Ω(n) = [ω1(n), ω2(n), . . . , ωL(n) ]T = dL(n)ω0(n), (2)

where the superscript T is the transpose operator, and dL(n) =
[ 1, 2, . . . , L(n) ]T . We assume that the harmonic signal s(n)
is contaminated by additive Gaussian noise v(n) with the
variance of σ2 and zero mean as

x(n) = s(n) + v(n), (3)

i.e., v(n) ∼ N (0, σ2). If the narrowband signal-to-noise ra-
tios (SNRs) of sinusoids are high enough, the observed signal
of such harmonic model can be approximated by the angular
noise ∆ωl(n) with a zero-mean normal distribution on each
sinusoid [22] as

x(n) ≈
L(n)∑
l=1

αl e
j (ωl(n)n+∆ωl(n)+ϕl). (4)

Therefore, unconstrained frequency estimates (UFEs)—of the
constrained frequencies—can be approximated as the sum-
mation of the true frequencies and an error term ∆Ω(n) that
is defined as ∆Ω(n) = [ ∆ω1(n),∆ω2(n), . . . ,∆ωL(n) ]T

[20], i.e.,

Ω̂(n) = [ ω̂1(n), ω̂2(n), . . . , ω̂L(n) ]T

= Ω(n) + ∆Ω(n), (5)

2Here, we utilize the discrete-time analytical signal, as in [21], to simplify
the notation and reduce the resulting complexity.

where ∆Ω(n) is a zero-mean multivariate-normally-distributed
variable with the covariance matrix defined as

R∆Ω(n) = E{∆Ω(n)∆ΩT(n)}, (6)

where ∆Ω(n) = Ω̂(n)−E{Ω̂(n)}, and E{·} denotes the
mathematical expectation. In white Gaussian noise, the preci-
sion matrix (inverse of the covariance matrix) is given by [20]:

R−1
∆Ω(n) =

2

σ2
diag

{
α2

1, α
2
2, . . . , α

2
L

}
, (7)

where diag{·} denotes the diagonal matrix formed with the
vector input along its diagonal. Consequently, for the time
frame x(n) = [x(n), x(n−1), · · · , x(n−M−1) ]T , the prob-
ability density function (PDF) of the UFEs given the unknown
pitch is approximately given by a multivariate normal distri-
bution with the constrained and non-zero mean:

P (Ω̂(n)|ω0(n)) ∼ N (dL(n)ω0(n),R∆Ω(n)). (8)

2.2. ML pitch estimate

Assuming that pitch is a deterministic parameter, the maxi-
mum likelihood (ML) estimator can be used to obtain an es-
timate for the pitch, where the log-likelihood function of the
UFEs is maximized:

ω̂0(n) = arg max
ω0(n)

logP (Ω̂(n)|ω0(n)). (9)

The optimal ML pitch estimator can be obtained by taking
the first derivative of the likelihood function with respect to
ω0(n) and setting it to zero, and is given by

ω̂0(n)=
[
dT
L(n)R−1

∆Ω(n)dL(n)
]−1

dT
L(n)R−1

∆Ω(n)Ω̂(n).

In the particular case with white Gaussian noise, the ML pitch
estimator is simplified to

ω̂0(n) =
1∑L

l=1(l αl)2
[α2

1, 2α2
2, . . . , Lα

2
L ] Ω̂(n), (10)

which is the same result as the weighted least squared (WLS)
pitch estimator in [5].

3. PITCH TRACKING

In general, the ML estimator is interesting because it is the
minimum-variance unbiased estimator in Gaussian noise. Us-
ing M samples of a stationary signal, the minimum variance
of the ML pitch estimator is inversely proportional to M3

[1]. Speech signals generally are not stationary, but a voiced
speech signal often has an stationary pitch during a short-time
frame less than 30 ms that, consequently, limits the number
of samples and the variance of the obtained pitch estimate.
Moreover, pitch values are usually correlated in a sequence;
this a priori information can be used to minimize the estima-
tion error, which is the aim of this section.
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In the following subsections, we compute the likelihood
of a given Ω̂(n) using (8), for which we need to compute the
covariance matrix using (6). To evaluate (6), the expected
value E{Ω̂(n)} has to be computed first. Since the pitch is
varying over time, we use an exponential moving average
(EMA) method with a forgetting factor 0 < λ < 1 to re-
cursively update the time-varying mean value as:

E{Ω̂(n)} = λ Ω̂(n) + (1− λ) E{Ω̂(n−1)}. (11)

After computing E{Ω̂(n)}, we can compute R∆Ω(n) using
(6). For this purpose, we use an ML estimator for the co-
variance (from normally-distributed observations) among N
estimates [6]:

R∆Ω(n) =
1

N

n∑
i=n−N+1

∆Ω(i)∆ΩT(i). (12)

3.1. Discrete state-space: HMM

In this section, we assume that pitch is a discrete random vari-
able and develop an HMM-based pitch estimation method to
utilize the correlation between consecutive pitch values. For
our problem, the hidden state corresponds to the pitch. HMM
provides a simple and yet effective way to model the tempo-
ral correlations and has been widely used in speech process-
ing [9, 23]. We discretize the interval that encloses the possi-
ble values of pitch into Nd centroids. In practice, since pitch
is a continuous variable, the discretization may introduce a
systematic bias in the estimation. However, this bias can be
arbitrarily lowered by increasing Nd.

We use a first-order Markov model, where the state vari-
able depends only on the one step past as:

P (ω0(n)|ω0(n−1), · · · ) = P (ω0(n)|ω0(n−1)), (13)

where P (ω0(n)|ω0(n−1)) denotes the transition probability
from ω0(n− 1) to ω0(n), and

∑
ω0(n) P (ω0(n)|ω0(n−1)) =

1. By gathering all these probabilities, we obtain an Nd×Nd

matrix which is usually referred to as the transition matrix.
Since the neighboring pitch values are highly correlated, it is
reasonable to assume that ω0(n) is likely to be close to ω0(n−
1), and the probability of a pitch estimate far from ω0(n−1)
will be very small. In order to use this a priori information,
we pre-define the transition matrix by sampling from a normal
PDF. Hence, the diagonal elements of the transition matrix
correspond to the maximum value of a normal PDF with the
variance σ2

t , and the neighboring values are sampled from the
normal PDF in steps of one standard deviation.

In a hidden state-space model, we have a series of obser-
vations, i.e., UFEs, which indirectly relate to states, and each
state has an emission distribution that is the same as the like-
lihood function in (8). We aim to estimate pitch (the hidden
state) in a causal manner, i.e., given only the current and past
observations {Ω̂(n), Ω̂(n − 1), . . .}. This yields a MAP es-
timate for pitch, and the common method to implement it is

through the forward algorithm [23]:

ω̂0(n) = arg max
ω0(n)

logP (ω0(n)|Ω̂(n), Ω̂(n−1), · · · ) (14)

= arg max
ω0(n)

logP (Ω̂(n)|ω0(n))+

logP (ω0(n)|Ω̂(n−1), Ω̂(n−2), · · · ), (15)

that maximizes the log-likelihood function plus the logarithm
of the prior distribution, which appears as a regularization
term. The prior distribution is recursively updated as

P (ω0(n)|Ω̂(n−1), Ω̂(n−2), · · · ) = (16)∑
ω0(n−1)

P (ω0(n)|ω0(n−1))P (ω0(n−1)|Ω̂(n−1), · · · ).

Note that the maximization in (14) is simply choosing the
maximum value in an Nd-dimensional vector.

3.2. Continuous state-space: Kalman filter (KF)

As it was discussed in Section 3.1, pitch is a continuous vari-
able and, hence, it is theoretically preferred to model the vari-
ations of pitch using a continuous state-space representation,
e.g., [24]. In this section, we develop such model, where the
state-evolution equation is designed to take into account the
correlation of the pitch values in the consecutive frames. For
this purpose, we write the complete state-space representation
as follows:

ω0(n) = ω0(n−1) + δ(n),

Ω̂(n) = dL(n)ω0(n) + ∆Ω(n),

where δ(n) ∼ N (0, σ2
t ) and ∆Ω(n) ∼ N (0,R∆Ω(n)) are

the state and observation noise, respectively, which are as-
sumed to be independent. Kalman filtering is a well-known
method that computes the MMSE estimate of the hidden state
variable in above [25], which is used here.

First, a pitch estimate is predicted using the past estimates
as

ω̂0(n|n−1) = ω̂0(n−1|n−1) (17)

where ω̂0(n|n−1) denotes the predicted estimate using the
past observations until Ω̂(n−1), and ω̂0(n−1|n−1) denotes
the updated estimate at time n− 1 using all the past observa-
tions, including Ω̂(n − 1). The variance of the prediction is
also given by

σ2
K (n|n−1) = σ2

K (n−1|n−1) + σ2
t , (18)

where σ2
K (n|n−1) and σ2

K (n−1|n−1) denote the variance of
the predicted estimate and updated estimate, respectively.

Second, the pitch estimate is updated. For this purpose,
the error term (or innovation) is computed as

e(n) = Ω̂(n)− dL(n) ω̂0(n|n−1). (19)
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Fig. 1. Obtained MSE using the proposed methods as a func-
tion of SNR. See text for details.

Then, the predicted estimate is updated:

ω̂0(n|n) = ω̂0(n|n−1) + hK(n)e(n), (20)

where hK(n) denotes the Kalman gain and is given by

hK(n) = σ2
K (n|n−1)dT

L(n)
[
ΠL(n)σ2

K (n|n−1)+R∆Ω(n)
]−1
,

where ΠL(n) = dL(n)dT
L(n). The variance of the updated

estimate is also recursively updated using

σ2
K (n|n) =

[
1− hT

K (n)dL(n)
]
σ2

K (n|n−1). (21)

4. EXPERIMENT RESULTS

We perform simulations to estimate and track the pitch in syn-
thetic and real speech signals using the proposed methods. In
the first experiment, we estimate the frequency of a sinusoid
signal with the sampling frequency fs = 8.0 kHz. A 65536-
point discrete Fourier transform (DFT) was applied on data
samples during 10 ms, i.e., M = 80. The forgetting factor λ
in (11) was set to 0.6, and N = 50 observations were used
to estimate the noise covariance matrix in (12). The sinusoid
signal in this experiment was a linear chirp signal with L = 5
harmonics with random phases and identical amplitudes dur-
ing 0.1 s, which was then perturbed by additive white Gaus-
sian noise at various signal-to-noise ratios (SNRs). The start-
ing pitch of the chirp signal was 400π/fs and it increases with
a rate of r = 100 Hz/s. For the HMM-based pitch estimator,
the frequency range ω ∈ [150, 280]×(2π/fs) was discretized
into Nd = 1000 samples. The variance related to the state
transition for both HMM- and KF-based methods was set to
be proportional to the linear chirp rate, i.e., σt =

√
2πr/f2

s .
Fig. 1 shows the obtained Mean Square Error (MSE), us-
ing 100 Monte-Carlo simulations for each SNR. As can be
seen, the HMM- and KF-based pitch estimates have lower
MSE than the corresponding ML pitch estimate, ω̂0,ML, and a
state-of-the-art pitch estimator from [5], which is denoted by
ω̂0,WLS. Moreover, the figure shows that the first harmonic of
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Fig. 2. Spectrogram of a speech signal in the presence of
car noise at SNR = 5 dB (top), and estimated pitch values,
superimposed on the spectrogram (bottom).

the UFEs (denoted by ω̂1) results in significantly larger errors
than all the other methods.

In the next experiment, we estimate the pitch in a speech
signal degraded by car noise at SNR = 5 dB. We select voiced
speech segments using the normalized low frequency energy
ratio [26], and estimate the number of harmonics using the
MAP order estimation [15]. A fixed σt = 0.0318π/fs was
used for both HMM- and KF-based methods. The other pa-
rameters were set: M = 240, λ = 0.9, and N = 150, as the
best choise for this experiment. Fig. 2 depicts the estimated
pitch values on the spectrogram of the noisy signal. As can
be observed, the HMM-based method tracks the pitch values
smoothly and more accurately compared to the other meth-
ods.

5. CONCLUSION

The work presented in this paper has focused on pitch esti-
mation. We have formulated an ML estimator for the pitch,
which was then extended to utilize the correlations between
consecutive pitch values to achieve higher accuracy and con-
tinuity for sequential pitch estimates. We have proposed
HMM- and KF-based pitch estimation methods from the
unconstrained frequency estimates, where noise characteris-
tics were updated recursively. These characteristics make a
contour over the frequency and time evolution, which were
considered in the joint pitch estimation and tracking. Ex-
perimental results showed that both HMM- and KF-based
methods outperform the corresponding optimal ML pitch
estimator and another state-of-the-art method, based on the
weighted least squares. Moreover, results using a real speech
signal showed that the HMM-based method tracks the pitch
more accurately and smoothly than the KF-based method.
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