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ABSTRACT

Although context-dependent DNN-HMM systems have achieved
significant improvements over GMM-HMM systems, there still ex-
ists big performance degradation if the acoustic condition of the test
data mismatches that of the training data. Hence, adaptation and
adaptive training of DNN are of great research interest. Previous
works mainly focus on adapting the parameters of a single DNN
by regularized or selective fine-tuning, applying linear transforms to
feature or hidden-layer output, or introducing vector representation
of non-speech variability into the input. These methods all require
relatively large number of parameters to be estimated during adap-
tation. In contrast, this paper employs the cluster adaptive training
(CAT) framework for DNN adaptation. Here, multiple DNNs are
constructed to form the bases of a canonical parametric space.
During adaptation, an interpolation vector, specific to a particular
acoustic condition, is used to combine the multiple DNN bases into
a single adapted DNN. The DNN bases can also be constructed at
layer level for more flexibility. The CAT-DNN approach was eval-
uated on an English switchboard task in unsupervised adaptation
mode. It achieved significant WER reductions over the unadapted
DNN-HMM, relative 6% to 8.5%, with only 10 parameters.

Index Terms— Cluster Adaptive Training, Deep Neural Net-
work, Adaptation

1. INTRODUCTION
In recent years, context-dependent deep neural network HMM
(CD-DNN-HMM) systems have achieved significant performance
improvements compared to the conventional GMM-HMM systems
[1, 2, 3]. Although the improvements are consistent over all types of
acoustic conditions (e.g. speaker, channel or environments), it has
been observed that there still exists significant performance degra-
dation if the acoustic condition of the test data mismatches that of
the training data [4]. This reveals that there is still a large room for
DNN-HMM to improve under mismatched conditions. Therefore,
adaptation and adaptive training, being successful in dealing with
the acoustic condition mismatch problem in the GMM-HMM era,
are attracting more and more research interest. Speaker adaptation
is most widely investigated and is also the focus of this paper. It is
worth noting that the proposed approaches can be readily used for
other acoustic conditions.

Over the past years, various adaptation schemes for DNN have
been proposed. Many adaptation approaches for GMM-HMM [5, 6,
7] have been applied on DNN. For example, similar to the idea of
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maximum a posteriori (MAP) adaptation, the KL-divergence regu-
larization adaptation uses the KL distance to keep the adapted DNN
close to a well trained unadapted DNN [8]. Linear transforms are
also widely used to adapt feature or hidden-layer output [9, 10, 11,
12]. Layer-wise adaptive training is also implemented for DNN,
where the updates of a speaker-dependent layer and the rest speaker-
independent layers are interleaved [13]. In addition, a number of
adaptation approaches specific to DNN have also been proposed.
The basic idea of these approaches is to introduce some speaker-
dependent vector representations as input to DNN and allow DNN
to learn how to effectively combine the speaker representations with
the normal acoustic features. The representation can be estimated
either independent of the DNN, such as the iVector adaptation [14,
15, 16], or dependent on the DNN, such as speaker code adaptation
[17, 18]. Although the previous adaptation approaches have yielded
good gains over unadapted DNN-HMM systems, they all require rel-
atively large number of adaptation parameters to obtain satisfactory
gains for large ASR systems. This is largely because all adapta-
tion power is mostly encapsulated in the adaptation parameters. It is
worth noting that the iVector and the speaker code approaches intro-
duce connections between the speaker representation vectors and the
original DNN layers. These additional parameters also encapsulate
useful information for adaptation and only need to be updated dur-
ing training. Hence, the actual number of parameters for effective
adaptation is relatively small, but still at the level of hundred.

In contrast to the previous approaches where only a single
DNN is used, this paper applies the cluster adaptive training (CAT)
[19, 20, 21] framework to DNN adaptation. In this framework, mul-
tiple model sets are used to form the bases of a speaker-independent,
canonical parametric space. A speaker-dependent interpolation vec-
tor is used to combine the multiple model sets into a single adapted
model set. Here, the weight matrices of DNN are regarded as the
model set. Since DNN has many layers, the multiple DNN bases
can also be constructed at layer level for more flexibility. During
training, the bases and the interpolation vectors specific to each
training speaker are updated. During adaptation, only the interpo-
lation vectors for each test speaker need to be estimated. With this
framework, since the multiple DNN bases bear rich information for
speaker adaptation, only very few adaptation parameters, i.e. inter-
polation vectors, can yield significant performance gains, as shown
in later experiments. Also, richer acoustic factors may be easily
incorporated by employing DNN bases corresponding to the desired
acoustic factors, although this is not the focus of this paper.

The rest of the paper is organized as follows. Section 2 describes
the details of applying cluster adaptive training to DNN, followed by
the experiments in section 3. Finally, section 4 concludes the whole
paper and discusses future works.
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2. CLUSTER ADAPTIVE TRAINING FOR DNN

Adaptive training is a structured modelling approach for building
systems on non-homogeneous training data. Two distinct sets of
model parameters are usually used: a global, speaker-independent
canonical model representing the desired speech variability; a set of
speaker-dependent transforms representing characteristics for each
training speaker respectively. The two sets of parameters need to be
combined to form the adapted model with standard format. Specif-
ically, in cluster adaptive training (CAT) for GMM-HMM [19], the
adapted mean of Gaussian component m for speaker s, µ(sm), is
obtained by

µ(sm) =

P∑
c=1

λ(srm)
c µ(m)

c

where P is the number of clusters, rm is the regression base class to
which the Gaussian componentm belongs andµ(m)

c is the canonical
mean vector of Gaussian m for cluster c. Therefore, the two sets of
CAT parameters are:

• Canonical model: Each Gaussian has multiple mean vectors
and a shared covariance matrix.

M =
{
{M(1) ... M(N)}, {Σ(1) ... Σ(N)}

}
where M(m) = [µ

(m)
1 ... µ

(m)
P ] is the multiple mean vec-

tors for Gaussian component m and N is the total number
of Gaussians. The canonical model parameters are updated
using all training data.

• Speaker interpolation vectors: A set of interpolation vec-
tors, each specific to speaker s and associated with base class
rm, are used. Each vector is estimated only using the data
from the corresponding speaker.

λ(srm) = [λ
(srm)
1 ... λ

(srm)
P ]>

2.1. DNN with CAT Layers

CAT can be extended to DNN by introducing multiple canonical
weight matrices for a DNN layer as depicted in Fig. 1.
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Fig. 1. Architecture of CAT-DNN for one layer

The adapted DNN matrices of layer l for speaker s, W(sl), is
then represented as an interpolation of the canonical DNN matrices:

W(sl) =

P∑
c=1

λ(sl)
c W(l)

c (1)

If multiple layers are constructed as CAT-layers, the parameter sets
of CAT-DNN can be written as

M =
{
{M(l1) ... M(lL)}, {W(k1), ... W(kK)}

}
λ(sl) = [λ

(sl)
1 ... λ

(sl)
P ]>

where M(l) = [W
(l)
1 ... W

(l)
P ] is the set of weight bases of layer

l, L is the total number of CAT-layers, W(k) is the weight matrix
of non-CAT layer k and K is the total number of non-CAT layers.
Similar to CAT for GMM-HMM, λ(sl) denotes the speaker depen-
dent interpolation vectors for layer l and speaker s.

As depicted in Fig.1, a neutral cluster, whose interpolation
coefficient is always 1.0, can be introduced to represent cluster-
independent aspects. The CAT-layer parameters then become

M(l) = [W
(l)
1 ... W

(l)
P ,W(l)

nc ]

λ(sl) = [λ
(sl)
1 ... λ

(sl)
P , 1]>

Neutral cluster does not affect the parameter update formula except
for always fixing the neutral cluster coefficient to be 1.0.

With the above definitions, the output of CAT-layer l for speaker
s, o(s)l , can be defined as below:

o
(s)
l = σ

(
s
(s)
l

)
, s

(s)
l = W(sl)o

(s)
l−1 + b

(l) (2)

where σ(·) is an element-wise sigmoid function, W(sl) is con-
structed using equation (1), b(l) is a speaker independent bias for
layer l. The update formula of the CAT-DNN parameters can then
be obtained by using the Back-Propagation algorithm with the min-
imum cross entropy criterion Lce. For a mini-batch B, the gradients
w.r.t. the CAT parameters can be derived as

• CAT-layer canonical weight matrix for cluster c

∂Lce

∂W
(l)
c

=
1

NB

∑
s

λ(sl)
c

∑
o
(s)
0 ∈B

∂Lce

∂s
(s)
l

o
(s)>
l−1 (3)

where NB is the number of frames in the mini-batch, o(s)0

denotes the input observation (0th layer) from speaker s, the
derivative w.r.t. the combined input s(s)l can be obtained us-
ing standard BP. It is worth noting that all training data need
be used to update W

(l)
c .

• Speaker-specific interpolation coefficient

∂Lce

∂λ
(sl)
c

=
1

N
(s)
B

∑
o
(s)
0 ∈B

(
∂Lce

∂s
(s)
l

)>
W(l)

c o
(s)
l−1 (4)

where N (s)
B is the number of observations of speaker s in the

mini-batch B. Note that only the data of speaker s is used to
calculate the gradient for λ(sl)

c .

The two sets of parameters are updated simultaneously in this pa-
per. After training, only the CAT-DNN is retained for further use
and the interpolation vectors for training speakers may be discarded.
During adaptation, given the transcriptions of the adaptation data,
interpolation vectors are re-estimated for each test speaker. Then
the CAT-DNN is interpolated to form a standard DNN for decoding.
Compared to the number of parameters required by the other DNN
adaptation and adaptive training approaches, e.g. 1000-dimensional
vector of speaker code [18], only P parameters are needed in CAT-
DNN, which is far fewer than the other methods.
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2.2. Initialization of CAT-DNN

Since CAT-DNN makes use of multiple weight bases, it is impor-
tant to discuss how to initialize the CAT-DNN parameters. Training
for CAT-DNN starts after the RBM pretraining, the initialization of
weight bases is simply duplicating RBM weight matrices. Initializa-
tion of the speaker-dependent interpolation vectors are required for
both training and adaptation. It can be done in three ways:

• Prior knowledge. This allows the clusters to be associated
with meaningful acoustic condition labels. For example, gen-
der information can be used for two clusters, channel infor-
mation can be used for additional clusters.

• Automatic data clustering. Data driven clustering can be
performed to construct D homogeneous data block. Then a
1-of-D vector can be used for each data sample as the initial
weights. For example, k-means can be applied to iVectors to
form speaker groups for cluster initialization.

• Random initialization. The cluster interpolation vector can
also be randomly initialized. For a P dimensional vector, c is
randomly chosen from {1, · · · , P} and λ(sl)

c is set 1 and the
others are set 0.

It is also possible to initialize CAT-DNN by directly using well
trained DNN models with the same structure as the bases. Then
the estimation of interpolation vectors can be regarded as a speaker-
dependent DNN model combination approach. Since model combi-
nation is not the focus of this paper, this is not further discussed.

2.3. CAT-DNN with Different Structures

The CAT-DNN derivation in section 2.1 assumes that each CAT layer
has a distinct set of interpolation vectors. A variation of this struc-
ture is to tie the interpolation vectors of all CAT layers together.
With the tying structure, the cluster interpolation vector becomes
λ(sl) = [λ

(s)
1 ...λ

(s)
P ], where λ(s)

c is a global value for all CAT-
layers. Consequently, the gradient for λ(s)

c becomes

∂Lce

∂λ
(s)
c

=
1

N
(s)
B NC

∑
l∈C

∑
o
(s)
0 ∈B

(
∂Lce

∂s
(s)
l

)>
W(l)

c o
(s)
l−1 (5)

where C is the set of CAT-layers, NC is the number of CAT-layers.
As interpolation vector is the only set of parameters to be estimated
during adaptation, tying reduces the number of adaptation parameter.
However, the adaptation performance may also be affected as the
model flexibility is reduced. Hence, whether to choose the tying
structure is a trade-off between complexity and performance.

Another variation of CAT-DNN structure is to apply CAT to the
bias parameters of DNN. Compared to equation (2) where a speaker-
independent bias b(l) is used, introducing bias bases leads to a new
formulae to calculate the combined input of layer l

o
(s)
l = σ

(
s
(s)
l

)
, s

(s)
l = W(sl)o

(s)
l−1 + b

(l) +

P∑
c=1

λ(sl)
c b(l)c (6)

where b(l)c are the bias bases and can be estimated using BP, similar
to W

(l)
c . Note that for the systems with neutral clusters, since there

is a constant 1 in cluster interpolation vector, the independent bias
b(l) is redundant and can be removed.

3. EXPERIMENTS

CAT-DNN was evaluated on a 310-hr English Switchboard dataset
with 4870 channels. A subset of 51-hr data, 810 channels, was ran-
domly chosen to form a small training set to investigate different
CAT-DNN configurations. The full 310-hr Switchboard dataset is
then used to evaluate the final performance of CAT-DNN using the
configurations learned from 51-hr dataset. The NIST 2000 Hub5e
set (referred to as swb, 1831 utterances with 40 speakers) and Rich
Transcription 2003 set (referred to as fsh, 3940 utterances with 72
speakers) were used as the test sets.

13-dimensional PLP features with per-speaker CMN and CVN,
along with first and second derivatives were extracted. Two triphone
GMM-HMMs model were trained to generate the original state level
alignment. The first one with 3001 tied states was used for 51 hours
task, another with 9296 tied states was used for 310 hours task. Two
types of DNN systems, RBM initialized, 7-hidden layers with 2048
nodes per layer, were trained for 51-hours task and 310-hours task
respectively. The initial learning rate is set as 1.6 and reduced by half
after four iterations and the learning rates for canonical weight bases
and cluster interpolation vectors are the same. A trigram language
model which was trained on the transcription of the 2000h Fisher
corpus and interpolated with a background trigram model was used
for decoding.

During recognition, unsupervised self adaptation was used. Hy-
potheses was first generated using the baseline speaker-independent
DNN (SI-DNN) system. State level alignment is then obtained given
these hypotheses. Interpolation vectors were then estimated using
equation (4) or (5). The initial learning rate for adaptation was
0.2 and reduced by half after the second iteration. Adaptation was
stopped after the 8th iteration.

3.1. Investigation of Different Aspects of CAT-DNN

The small 51-hr training set was used for investigation in this sec-
tion. 2-cluster CAT-DNN systems, initialized using gender informa-
tion and without neutral cluster and bias bases, were constructed.
To make fair comparison, in addition to the SI-DNN baseline, two
gender-dependent DNN systems were also built. The GD-DNN sys-
tems were directly trained using the male and the female training
data respectively and the KL-GD-DNN systems employed the KL-
divergence adaptation [8] for each gender to get more robust GD sys-
tems. During adaptation, the gender information of the test speakers
was assumed to be known and also used for CAT-DNN adaptation
initialization.

3.1.1. Effect of Layer Position for a Single CAT Layer

The performance of the baseline systems and the 2-cluster CAT-
DNN systems with different layer positions are shown in table 1.

System CAT Layer swb fsh

SI 25.3 28.9
GD — 26.1 28.9

GD-KL 24.9 28.6

CAT-DNN

H1 24.1 27.1
H2 24.2 27.6
H4 24.4 28.0
H7 24.9 28.5

Output 24.8 28.2

Table 1. WER (%) of CAT-DNN with Single CAT Layer
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It can be observed that straightforward GD-DNN system is
worse than the SI-DNN system, due to reduced training data. KL-
divergence adaptation is more robust and yielded better results than
the SI-DNN baseline. In contrast, all CAT-DNN systems with a
single CAT layer outperformed all baselines. The performance be-
comes worse as the CAT layer becomes higher. The best CAT-DNN
performance is obtained for the first hidden layer. Note that when
CAT is applied to the output layer, the dynamic range of the state
log-likelihood changes and hence language model scaling factor
should be tuned during decoding. In this paper, this effect is not of
interest and hence CAT was not applied to the output layer in the
below experiments.

3.1.2. Effect of Tying for Multiple CAT Layers

As indicated in section 2.3, when multiple CAT layers are used, tying
is an option to reduce adaptation parameter number.

CAT Layer Tying # Adapt Param. swb fsh

H1 — 2 24.1 27.1

H1-H2 × 4 24.2 27.2√
2 24.1 27.7

H1-H7 × 14 24.1 26.5√
2 24.4 27.8

Table 2. WER (%) of CAT-DNN with Multiple CAT Layers

From table 2, the use of multiple CAT layers yielded improve-
ments over the best single CAT layer when all hidden layers are CAT
layers. Interpolation vector tying always degraded the performance.
Hence, in the rest experiments, no tying were used.

3.1.3. Effect of Neutral Cluster and Bias Bases

Here, CAT-DNN systems with neutral cluster and speaker dependent
bias bases were built to investigate more complicated CAT structure.

CAT Layer Neutral Cluster Bias Bases swb fsh

H1
× × 24.1 27.1
×

√
24.7 27.5√

× 24.3 27.3

H1-H2
× × 24.2 27.2
×

√
23.8 26.9√

× 23.7 26.7

H1-H7
× × 24.1 26.5
×

√
24.0 26.4√

× 23.6 26.7

Table 3. WER (%) of CAT-DNN w/o Neutral Cluster and Bias Bases

From table 3, the introduction of speaker dependent bias bases
and neutral cluster both yielded performance improvements for sys-
tems with multiple CAT layers. This shows that more complicated
CAT structures are useful. In the rest of experiments, neutral clus-
ter was only employed for CAT-DNN with multiple CAT layers and
bias bases were not used, unless explicitly stated.

3.1.4. Effect of Cluster Number and Cluster Initialization

In this section, different number of clusters were investigated. From
table 4, for single CAT layer, the performance generally becomes
better with more clusters. Especially for 10 clusters, the best perfor-
mance was obtained. WER for swb reduce from 25.3 to 23.3 (about

CAT Layer # Cluster # Adapt Param. swb fsh

H1

2 2 24.1 27.1
5 5 23.7 26.4

10 10 23.3 25.8
20 20 23.3 26.1

H1-H2 2 4 23.7 26.7
5 10 24.1 26.9

Table 4. WER (%) of CAT-DNN with Different Number of Clusters

7.9% relative error reduction) and from 28.9 to 25.8(about 10.7% rel-
ative error reduction) for fsh set. However, for multiple CAT layer,
not as expected, more clusters led to increased WER. This may be
because 51-hr data is too small to well train complicated models.

CAT Layer # Cluster Initialization swb fsh

H1
2 gender 24.1 27.1

random 24.2 27.1

5 kmeans 23.7 26.4
random 23.6 26.5

Table 5. WER (%) of CAT-DNN with Different Initialization Ap-
proaches for Both Training and Adaptation

Table 5 shows the effect of different initialization approaches on
a single CAT layer. It can be observed that the CAT-DNN systems
performance is not sensitive to initialization. Even random initial-
ization can yield satisfactory results.

3.2. CAT-DNN Performance on Large Training Set

Finally, CAT-DNN systems were built on the full 310-hr switchboard
dataset. From table 6, all CAT-DNN systems outperformed the SI-
DNN baseline. With the large training dataset, 2 CAT layers with 5
clusters obtained the best performance as expected. It achieved sig-
nificant gains over the SI-DNN system (relative 8.5% for swb and
6.0% for fsh) with only 10 parameters, demonstrating the effective-
ness of CAT-DNN.

CAT Layer # Cluster Neutral Cluster swb fsh

SI — — 19.9 21.5

H1 2 × 19.0 20.5
5 × 18.9 20.3

H1-H2 2
√

18.7 20.5
5

√
18.2 20.2

Table 6. WER (%) of CAT-DNN Trained on 310-hr Switchboard
Dataset

4. CONCLUSIONS

Cluster adaptive training (CAT) for DNN is introduced in this paper.
Instead of using a single DNN, multiple DNNs are trained to form
the bases of a speaker-independent, canonical parametric space. An
interpolation vector is estimated for each speaker to combine the
DNN bases during adaptation. Since interpolation vector is a com-
pact representation of acoustic conditions, much fewer parameters
are estimated during adaptation than the other adaptation methods.
CAT-DNN yielded significant WER reduction on an English switch-
board task with only 10 parameters. Future work will look into com-
bination of multiple acoustic factors, more flexible structure and ap-
ply on Sequent-based criterion DNN.
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