
MAXIMUM LIKELIHOOD NONLINEAR TRANSFORMATIONS BASED ON DEEP NEURAL
NETWORKS

Xiaodong Cui, Vaibhava Goel

IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA

ABSTRACT
This paper investigates modeling nonlinear transformations based on
deep neural networks (DNNs). Specifically, a DNN is used as a non-
linear mapping function for feature space transformation for HMM
acoustic models. The nonlinear transformations are estimated under
the sequence-based maximum likelihood criterion. The likelihood
partition function is evaluated using the Monte Carlo method based
on importance sampling. The DNN is first pre-trained approximately
to a linear transformation then followed by fine-tuning using the gra-
dient descent algorithm. In addition, a deep stacked architecture is
proposed that builds a DNN as a series of sub-networks hierarchi-
cally with each representing a nonlinear transformation. A block-
wise learning strategy is introduced. LVCSR speaker adaptation ex-
periments on the proposed maximum likelihood nonlinear transfor-
mation have shown superior results than the widely-used CMLLR
transformation.

Index Terms— deep neural networks, nonlinear transformation,
maximum likelihood, Monte Carlo method, importance sampling

1. INTRODUCTION

Maximum likelihood linear regression (MLLR) [1][2] has been one
of the most successful techniques for speaker or environmental adap-
tation in automatic speech recognition (ASR). Despite its success,
MLLR has its limitations one of which is that the transformation is
linear. Artificial neural networks (ANNs) are known as universal ap-
proximators [3]. Given the hidden layers with nonlinear activation
functions in the neurons, an ANN can give rise to a nonlinear trans-
formation that is more powerful than linear transformations. With
the advent of deep neural networks (DNNs) [4], applications using
DNNs as nonlinear approximators can be widely found in speech-
related areas such as noise robustness [5], speech enhancement [6],
voice conversion [7], etc.. This paper investigates nonlinear feature
transformations that are based on deep neural networks (DNNs) for
HMM-based speech recognition. The nonlinear transformations are
estimated under the sequence-based maximum likelihood (ML) cri-
terion and can be considered an extension of the constrained max-
imum likelihood linear regression (CMLLR)[2] that has been com-
monly used in the speech community.

Different from CMLLR where the likelihood partition func-
tion is analytical due to the linear form of the transformation, the
proposed maximum likelihood nonlinear transformation (MLNT)
does not have a closed form for the partition function. In this work,
the likelihood partition function is evaluated using the Monte Carlo
(MC) method based on importance sampling [8][9][10]. Before the
ML estimate of MLNT, the networks for the nonlinear transforma-
tions are first pre-trained under the minimum mean square error
(MMSE) criterion with the CMLLR-transformed target. After the
pre-training, fine-tuning is applied where the sequence-based ML
estimation is carried out using the gradient descent (GD) algorithm.

We also propose a deep stacked architecture that hierarchically
constructs a series of nonlinear transformations in one deep neural
network where each sub-network in it serves as a building block rep-
resenting a nonlinear transformation. A block-wise learning strategy
is introduced. In this strategy, each additional sub-network is first
initialized to a CMLLR linear transformation by fixing the lower
network and taking the output of the lower network as features.
Then it is followed by fine-tuning using the GD algorithm under the
sequence-based ML criterion.

The remainder of the paper is organized as follows. Section 2
gives the mathematical formulation of the proposed MLNT and the
evaluation of the likelihood partition function using importance sam-
pling. It also addresses the MMSE pre-training of the DNNs for
nonlinear transformations. Section 3 presents the deep stacked ar-
chitecture and its block-wise learning strategy. Results of LVCSR
speaker adaptation experiments are provided in Section 4 followed
by a discussion in Section 5.

2. MATHEMATICAL FORMULATION

Let O = {o1, · · · ,oT} be a feature sequence of an utterance with
T frames from a speaker. Suppose we know some hidden Markov
model (HMM) acoustic model λ. For simplicity, we assume there
is only one Gaussian in the Gaussian mixture model (GMM) distri-
bution in each HMM state. The extension to multiple Gaussians is
straightforward. We want to create a transformation such that the
transformed feature sequence from this speaker Ô = {ô1, · · · , ôT},
where ôt = f(ot), maximizes the following likelihood given the
acoustic model

f∗ = max
f

logP (Ô|λ,O). (1)

Here the transformation is modeled by a deep neural network as il-
lustrated in Fig.1, where the parameters of the mapping function are
the weights W of the network. The input and output of the net-
work have the same dimensionality. The hidden layers have nonlin-
ear activation functions while the output layer has identity activation
functions. The nonlinear transformation is denoted by fW.

2.1. Gradient

Given the objective function in Eq.1, the optimization is carried out
by GD. For each utterance, the likelihood of the transformed feature
sequence can be computed as

P (Ô|λ,O) =

M∑
i=1

M∑
j=1

αt−1(j)ajibi(ôt)βt(i) (2)

where M is the number of HMM states; aji are the state transition
probabilities from state j to state i; α and β are forward and back-
ward probabilities; bi(·) is the observation distribution of state i. It
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Fig. 1. A deep neural network as a nonlinear transformation func-
tion.

can be shown that

∂ logP (Ô|λ,O)

∂ log bi(ôt)
= γt(i) (3)

where γt(i) is the posterior probability of being in state i at time t.
The gradient of the log-likelihood with respect to the weights of the
network can be evaluated as follows

∂ logP (Ô|λ,O)

∂W
=

T∑
t=1

M∑
i=1

∂ logP (Ô|λ,O)

∂ log bi(ôt)

∂ log bi(ôt)

∂W

=
T∑

t=1

M∑
i=1

γt(i)
∂ log bi(ôt)

∂W
(4)

which is the sum of gradients from each HMM state weighted by
their posterior probabilities.

Assume the observation likelihood of the transformed data in
each HMM state i have the following form

bi(ôt) =
1

Zi
exp {−Ei(ot)} (5)

where

Ei(ot) =
1

2
[fW(ot)− µ]TΣ−1 [fW(ot)− µ] (6)

Zi =

∫
ot

exp {−Ei(ot)} dot (7)

are the energy function and partition function for state i.
From Eq.5 one has

log bi(ôt) = −Ei(ot)− logZi (8)

and its gradient can be computed as

∂ log bi(ôt)

∂W
= −∂Ei(ot)

∂W
− 1

Zi

∂Zi

∂W

= −∂Ei(ot)

∂W
+

∫
ot

bi(ôt)
∂Ei(ot)

∂W
dot (9)

where

∂Ei(ot)

∂W
=

∂fW(ot)

∂W

∂Ei(ot)

∂fW(ot)
=

∂fW(ot)

∂W
Σ−1 [fW(ot)− µ]

(10)

Substituting Eq.10 back to Eq.9, one has

∂ log bi(ôt)

∂W
= −∂fW(ot)

∂W
Σ−1 [fW(ot)− µ] (11)

+

∫
ot

bi(ôt)

{
∂fW(ot)

∂W
Σ−1 [fW(ot)− µ]

}
dot

Since fW is a nonlinear transformation based on a neural network,
the derivative term ∂fW(ot)

∂W
can be evaluated recursively using the

back-propagation algorithm. The second term on the RHS does not
have an analytical solution but it can be evaluated using the Monte
Carlo methods. However, directly sampling from distribution bi(ôt)
is not trivial as ôt is after a nonlinear transformation and, as a result,
bi(ôt) is not Gaussian any more. In this work, importance sampling
is used for evaluating this expectation term using a proposal distri-
bution that is easier to deal with.

2.2. Importance Sampling

Suppose one wants to evaluate an expectation of a function f(x)
with respect to some distribution p(x). The importance sampling
method draws samples from a proposal distribution q(x). Let’s ex-
press the distributions explicitly with the normalization term

p(x) =
1

Zp
p̃(x), q(x) =

1

Zq
q̃(x) (12)

Assume p̃(x) can be evaluated easily but Zp can not. Choose a pro-
posal distribution q(x) such that both q̃(x) and Zq can be evaluated
easily. Draw samples x(k) (k = 1, · · · ,K) from q(x) and one has

E[f ] =

∫
x

f(x)p(x)dx =
Zq

Zp

∫
x

f(x)

[
p̃(x)

q̃(x)

]
q(x)dx

≈ Zq

Zp

1

K

K∑
k=1

r̃kf(x
(k)) (13)

where r̃k = p̃(x(k))/q̃(x(k)) and the ratio of two normalization
terms can be evaluated using the same samples

Zp

Zq
=

1

Zq

∫
x

p̃(x)dx =

∫
x

p̃(x)

q̃(x)
q(x)dx =

1

K

K∑
k=1

r̃k (14)

It follows that

E[f ] ≈ Zq

Zp

1

K

K∑
k=1

r̃kf(x
(k)) =

K∑
k=1

wkf(x
(k)) (15)

where

wk =
r̃k∑K

m=1 r̃m
=

p̃(x(k))/q̃(x(k))∑K
m=1 p̃(x

(m))/q̃(x(m))
(16)

Eq.15 shows that with importance sampling, the expectation is ap-
proximated by a weighted average using the samples drawn from the
proposal distribution, where the weights computed by Eq.16 are used
to compensate the bias between the proposal and target distributions.

Importance sampling also provides a way to evaluate the parti-
tion function of a distribution. According to Eq.14

Zp

Zq
=

1

K

K∑
k=1

r̃k (17)

It follows that

logZp = log

(
1

K

K∑
k=1

r̃k

)
+ logZq (18)

If the partition function Zq of the proposal distribution q(x) can be
evaluated analytically and the partition function Zp of the target dis-
tribution p(x) can be evaluated according to Eq.18.
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2.3. Network Pre-training

For the DNN-based nonlinear transformation illustrated in Fig.1, the
network is first pre-trained towards a linear transformation. Given
the acoustic model λ and the feature sequence O, the CMLLR trans-
formation {A, b} is estimated to maximize the following likelihood
function [2]

logP (Ô|A−1(µ− b),A−1ΣA−T ,O) (19)

which is accomplished by the EM algorithm [11]. Once the CMLLR
transformation is in place, set the target vector y in Fig.1 to

y = Ax+ b (20)

where x is the input feature vector. Given input and the CMLLR-
transformed target, the weights W of the network are initialized ran-
domly and then optimized by the GD algorithm under the MMSE
criterion

min
W

||y − x||2 (21)

Therefore, after the pre-training, the weights W of the network
are brought to the vicinity of the CMLLR transformation before
the fine-tuning under the sequence-based ML criterion introduced
in Section 2.1 using the GD algorithm.

The success of importance sampling requires the proposal dis-
tribution overlaps well with the target distribution. Therefore, if the
nonlinear mapping fW renders a heavy mismatch between target
distribution bi(ôt) and the proposal distribution then the importance
sampling will not work well. A natural option of the proposal dis-
tribution would be the original observation distribution bi(ot) of the
acoustic model. However, this will only work well if fW is not far
away from identity mapping. When fW becomes highly nonlinear,
the match between the two distributions will be poor.

In this work, the proposal distribution is chosen to be the
CMLLR-transformed original state observation distribution. In
the MMSE pre-training, CMLLR is first estimated and the weights
of the network W are initialized close to the CMLLR linear trans-
formation. Therefore, a good match between the two distributions
are expected. Furthermore, since CMLLR is a linear transformation,
the proposal distribution is still Gaussian from which samples can
be easily drawn. Under this condition, the proposal distribution can
be expressed as

q(ot) = N (ot;A
−1(µ− b),A−1ΣA−T ) (22)

and its partition function is logZq = log Z̄q − log |A| where Z̄q

is the partition function of the original state observation Gaussian
distribution. Along with Eq.18, the partition function of the target
distribution can be obtained.

3. A STACKED ARCHITECTURE

The nonlinear transformation created by the neural network in Fig.1
can serve as a building block in a stacked architecture as shown
in Fig.2. This deep architecture represents a nonlinear transforma-
tion itself but it is constructed by a composite of a series of nonlin-
ear transformations described by sub-networks in Fig.1. The sub-
networks are called “blocks” in Fig.2 and each block has nonlinear
activation functions in its hidden layers and identity activation func-
tions in the output layer. With the hierarchical nonlinear transforma-
tions contributed by each sub-network, this deep stacked architecture

may have a better representation capability overall for nonlinearity.
The weights of this stack architecture are denoted by

W(N) = (W1, · · · ,Wn, · · · ,WN ) (23)

where Wn represents the weights of the nth block.

x

y

block 1

block N

Fig. 2. A stacked deep architecture consisting of hierarchical sub-
networks to represent a nonlinear transformation, which is a com-
position of a series of nonlinear transformations described by each
sub-network (block).

The deep architecture in Fig.2 can be learned block-wise. The
training of the first block follows what is described in Section 2.
That is, one first estimate CMLLR using the EM algorithm based on
the HMM acoustic model in the conventional way [2] and pre-train
the weights of the block using MMSE with the CMLLR-transformed
target to approximate the CMLLR linear transformation. After the
pre-training, fine-tune the weights of the block using the GD algo-
rithm based on the sequence-based ML criterion.

Suppose the lower n−1 blocks have been successfully trained.
Take the output of the low n−1 blocks

O(n−1) = fW(n−1)(O) (24)

and estimate the CMLLR transformation of O(n−1) with respect to
the acoustic model λ

logP (Ô|A−1(µ− b),A−1ΣA−T ,O(n−1)). (25)

Since the fW(n−1) is nonlinear, the CMLLR estimated for the nth
block will not be subsumed. Once the CMLLR is estimated, fix
the weights W(n−1) of the lower n−1 blocks and run MMSE pre-
training of the nth block with CMLLR-transformed target to initial-
ize the weights of the nth block. After that, sequence-based ML
fine-tuning is performed through all the weights of the n blocks in-
cluding the lower n−1 blocks.

The CMLLR estimate is the local optimum in the sense of linear
transformation after the maximization step of the EM algorithm. The
initialization of weights of the network close to the CMLLR linear
transformation by the MMSE pre-training gives the GD search a rea-
sonable starting point for the nonlinear transformation estimate. In
addition, in the block-wise pre-training of the stacked architecture,
the CMLLR estimate of each additional block is expected to bring
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the estimate of the previous nonlinear transformation away from its
local optimum and provide a better starting point to start the GD
search for a new local optimum.

4. EXPERIMENTAL RESULTS

Speaker adaptation experiments are conducted on two English
LVCSR tasks from the DARPA Transtac program. The first task
has 11 speakers in the test set and each speaker has about 3-4 min-
utes of speech data recorded in quiet environment. The second task
has 7 speakers in the test set and each speaker has about 12-15 min-
utes of speech data recorded in noisy environment. Both tasks are
spontaneous speech sampled at 16KHz. In the proposed MLNT, the
dimensionality of the input and output layers of each block in the
stacked architecture is 40 which is equal to the dimensionality of the
input feature space. One hidden layer with 100 hidden units is used
in each block. We found that in this deep stacked architecture using
more than one hidden layer only gives marginal overall improve-
ments. Hyperbolic tangent activation functions are used in hidden
units and identity functions are used in the output units of each
block. The MMSE pre-training runs 100 iterations using a step size
of 1e-4 while the sequence-based ML fine-tuning runs 5 iterations
using a step size of 5e-8. When evaluating the likelihood partition
function, 100 samples are drawn from the proposal distribution in
the importance sampling method. Note that the partition functions
also have to be evaluated in decoding.

Table 1 presents the results on the first test set with clean speech.
The baseline acoustic model is a discriminative model trained un-
der the boosted maximum mutual information (BMMI) criterion on
feature-space MMI (FMMI) discriminative features [12] using 60
hours of clean speech. The model has 3K quinphone states and 50K
Gaussians. The adaptation is carried out for each speaker. CMLLR
yields 2.3% absolute improvement over the baseline. The proposed
MLNT uses 5 blocks, whose WER is 23.6%, 1.4% absolute better
than CMLLR.

model WER
FMMI+BMMI baseline 27.3
FMMI+BMMI+CMLLR 25.0
MLNT block 1 24.7
MLNT block 2 24.2
MLNT block 3 24.0
MLNT block 4 23.7
MLNT block 5 23.6

Table 1. Word error rates (WERs) of baseline, CMLLR and the
proposed MLNT on the test set of clean speech.

Table 2 presents the results on the second test set with noisy
speech. The baseline acoustic model is an ML model with multi-
style training (MST) using LDA features. The MST training data
is 60 hours including both clean and noisy speech. The signal-to-
noise ratios (SNRs) of noisy training data are between 10dB and
25dB. The estimated SNRs of the noisy test data are between 5dB
and 8dB. The model has 2K quinphone states and 80K Gaussians. In
this case, CMLLR yields a significant improvement over the baseline
by 17.4% absolute. This is mainly due to the mismatch between the
MST acoustic model and the noisy speech from the test speakers.
The proposed MLNT uses 3 blocks, whose WER is 27.2%, 3.3%
absolute better than CMLLR.

From both tables, it can be seen that with the additional blocks
the performance of the nonlinear transformation represented by the

model WER
LDA+ML baseline 47.9
LDA+ML+CMLLR 30.5
MLNT block 1 29.2
MLNT block 2 27.3
MLNT block 3 27.2

Table 2. Word error rates (WERs) of baseline, CMLLR and the
proposed MLNT on the test set of noisy speech.

stacked architecture is gradually improved from the first block.

5. DISCUSSION AND FUTURE WORK

Speaker adaptation using nonlinear transformations such as piece-
wise linear CMLLR [13] has been previously investigated. The
MLNT investigated in this paper uses DNNs for nonlinear feature
transformations for HMM acoustic models, which can be considered
an extension of CMLLR. Despite of a linear transformation, CM-
LLR is very effective at reducing statistical mismatch and has been
used as an off-the-shelf technique. MLNT is first pre-trained by
minimizing the MMSE between the input and CMLLR-transformed
target so that the weights of the network are initialized (approxi-
mately) to the linear transformation of CMLLR. Then the weights
are fine-tuned using the GD algorithm under the sequence-based
ML criterion. In [14], ANNs are used for nonlinear feature space
transformations. It appears that the impact of the partition function
term to the likelihood function due to the nonlinearity is ignored.
A fast nonlinear feature transformation method based on DNNs is
studied in [15] for speaker adaptation, whose framework is simi-
lar to this paper. However, only the nonlinearity of the bias term
is considered in [15]. This paper also proposes a novel stacked
architecture that is hierarchically constructed using sub-networks
as building blocks. Each sub-network itself is a DNN modeling a
nonlinear transformation and the overall deep stacked architecture
represents a composite of multiple nonlinear transformations, which
is more powerful and yields better performance. The stacked archi-
tecture can be learned block-wise including again a pre-training step
followed by a fine-tuning step.

Speaker adaptation in hybrid ANN/HMM systems are usually
carried out by retraining an additional input or output layer [16][17].
The work discussed here is focused on a nonlinear transformation
for generative GMM-HMM acoustic models.

For the future work, we would like to improve the evaluation
of the likelihood partition function to make the MC sampling more
efficient and less computationally demanding. We also would like to
investigate possible ways to linearize the nonlinear transformations
provided by the DNNs.
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