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ABSTRACT

Recent progress in acoustic modeling with deep neural network has
significantly improved the performance of automatic speech recogni-
tion systems. However, it remains as an open problem how to rapidly
adapt these networks with limited, unsupervised, data. Most existing
methods to adapt a neural network involve modifying a large num-
ber of parameters thus rapid adaptation is not possible with these
schemes. In this paper, the multi-basis adaptive neural network is
proposed, a new neural network configuration which only requires
very few parameters for adaptation. By modifying the topology of
a single multi-layer perception, a set of sub-networks with restrict-
ed connectivity are introduced to collaboratively capture different a-
coustic properties. The outputs of those sub-networks are combined
by speaker-dependent interpolation weights. In addition, the com-
plete system can be optimized in an adaptive training fashion when
non-homogeneous training data are used. The performance of un-
supervised adaptation is evaluated on two datasets. It outperform-
s the speaker-independent hybrid DNN-HMM baseline both on the
Broadcast News English and the AURORA-4 tasks.

Index Terms— Adaptation, deep neural network, speech recog-
nition

1. INTRODUCTION

Recently, the deep neural network (DNN) has been successfully ap-
plied to automatic speech recognition (ASR). It outperforms the con-
ventional Gaussian mixture hidden Markov model (GMM-HMM)
system in a variety of large vocabulary continuous speech recogni-
tion tasks [1, 2, 3]. Although significant improvements have been
achieved, the general speaker-independent (SI) DNN-HMM system
still cannot overcome the variations in different speakers or envi-
ronmental conditions [4]. Thus the speaker adaptation remains a
challenge in the DNN based acoustic models. For speaker adapta-
tion, the speaker-dependent transform must be powerful enough to
represent acoustic properties whilst the transform should be robustly
estimated on limited adaptation data. Speaker adaptation has been s-
tudied in the GMM-HMM framework. The parameters of the GMM-
HMM can naturally be interpreted as belonging to groups thus the
issues above can be addressed. Popular methods include maximum
a posteriori (MAP) approaches [5] and the linear transform based
models such as MLLR [6] and CMLLR [7]. However, it is difficult
to find meaningful structures in DNN parameters to enable similar
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transforms as that used in GMM-HMMs. Additionally, due to the
enormous number of neural network parameters, a DNN is likely
to be over-fitted, resulting in a significant performance degradation.
There have been a number of attempts to adapt neural networks.
Conservative training methods [8, 9, 10] introduce regularization on
the adaptation training criterion. Another category of approaches
appends supplementary indicators to compensate the DNN capabil-
ity in different acoustic conditions, e.g., using i-vector [11, 12] or
underlying factors [13] as additional input features. A method in
[14, 15] jointly trains a DNN with automatic speaker-specific fea-
tures, referred to as speaker codes. In addition, the transformation
based schemes treat the SI neural network as canonical model and
add additional linear hidden layers as speaker-dependent transform-
s prior to the input layer [16, 17], to the hidden layer [18, 19], or
to the output layer [20]. Instead of modeling additional transfor-
mations, the Hermitian based activation function in [21] is adapted
while keeping the DNN weights fixed. Recent researches also in-
vestigate adaptive training schemes in DNN rather than using the
SI neural network as canonical model. In [22], one hidden layer is
modeled as the speaker-dependent transform and in [23], addition-
al bottom normalization layers along with i-vector are introduced to
project raw acoustic feature into a speaker-normalized space. How-
ever, except for the feature-appending schemes like speaker code or
i-vector, most existing models still involve a large number of pa-
rameters to adapt, hence they would rarely handle rapid adaptation
scenarios with limited data.

This paper proposes a novel configuration of neural network and
its associated adaptive training scheme, named as multi-basis adap-
tive neural network (MBA-NN). This approach is inspired from a
similar concept of the cluster adaptive training (CAT) in the GMM-
HMM framework [24, 25]. The topology of multi-layer perceptron
is modified and a set of sub-networks are introduced, referred to as
bases. The hidden nodes are restricted to connect within a single
basis and different bases share no connectivity. The outputs among
different bases are subsequently combined via interpolation. The in-
terpolation weights, basis weight vector, can be utilized to adapt the
neural network into the speaker-dependent acoustic space. In this
adaptation scheme, it only requires to estimate a small number of
parameters for a particular speaker, hence it allows to be adapted
rapidly.

There is a similar structured neural network proposed in [26],
which directly combines the outputs of multiple denoising autoen-
coders by interpolation. There are two major differences from the
model proposed in this paper: one is that the MBA-NN is a general
framework which can be introduced to any layer of DNN; the other
is that the MBA-NN interpolation weights are estimated in an unsu-
pervised fashion rather than predicted by a discriminative classifier.

4315978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



The rest of this paper is organized as follows. A brief introduc-
tion to the neural network for ASR is given in Section 2. In Sec-
tion 3, the general form of multi-basis adaptive neural network and
the overall training strategy are proposed. Experimental results are
reported in Section 4. We finally conclude this study in Section 5.

2. DEEP NEURAL NETWORK FOR ASR

In speech recognition, the hybrid DNN-HMM system uses a multi-
layer perceptron (MLP) to predict the state emitting probability via
computing a pseudo likelihood

p(x|y) =
p(y|x)p(x)

p(y)
∝ p(y|x)

p(y)
, (1)

where x and y stand for an acoustic observation and the index of a
context-dependent state respectively; p(x) is independent from the
state thus can be ignored. The multi-layer perceptron is a simple
version of feed-forward neural network model that maps the input
vector x onto a set of output targets y. It can be viewed as a di-
rected graph, which consists of multiple hidden layers as illustrated
in Fig. 1. The hidden nodes (or neurons) between two consecutive
layers are fully connected while neurons within one layer are not.

Fig. 1. Multi-Layer Perceptron.
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Denote the output of the l-th layer as zl(x), the input of the
successive, (l + 1)-th, layer is then given by

hl+1(x) = σ
(
zl (x)

)
. (2)

where σi(z) = 1
1+exp(−zi)

is the sigmoid function and

zl(x) = Wlhl(x) + bl (3)

represents a transformation given on the l-th layer and the parame-
ters of the transformation are defined as Wl and bl. The softmax
activation function is usually used as the output for MLP models on
multi-label classification tasks, it can be viewed as the target poste-
rior given the input observation

p(y = i|x) =
exp(zLi )∑
j exp(zLj )

, (4)

where L denotes the index of the last hidden layer. The notations
specified in this section will be used in the following discussions.

3. MULTI-BASIS ADAPTIVE NEURAL NETWORK

The structure of multi-basis adaptive neural network is illustrated in
Fig. 2. A set of distinct sub-networks are introduced to the multi-
layer perceptron, referred to as the bases. There is a common input

layer and a common output layer. Optionally, common hidden lay-
ers can be introduced before propagating to the bases, or after their
output combination. A basis is composed of multiple hidden layers.
The hidden units between two successive layers within one basis are
fully connected, while there is no connection between neurons com-
ing from different bases. The outputs of bases are then combined
subsequently. In this paper, we investigate the interpolation scheme:
they are linearly combined using a set of adaptive weights, the basis
weight vector,

λ = [λ1, . . . , λK ]T . (5)

where K denotes the number of basis and the result

h̄l(x) =

K∑
k=1

λkh
l
k(x) (6)

is propagated to the successive common layers, where hl
k(x) repre-

sents the input to the l-th layer of the k-th basis.

Fig. 2. Multi-Basis Adaptive Neural Network.
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3.1. MBA-NN Training

The MBA-NN inherently falls into an adaptive training framework.
In this training scheme, the canonical modelM is defined as

M = {Ψ1, . . . ,ΨK ,Ωshared} , (7)

where Ψk stands for the parameters of the k-th basis and Ωshared de-
notes the shared layers in MBA-NN. The set of speaker-dependent
transforms Λ for S training speakers is given by

Λ =
{
λ(1), . . . ,λ(S)

}
, (8)

where S denotes the total of training speakers. BothM and Λ are
jointly optimized in this training scheme. The aim of the training
procedure is to minimize the cross entropy over the training set with
associated state alignments and speaker information:

L(M,Λ) = −
S∑

s=1

∑
t∈Is

log p(yt|xt;M,λ(s)). (9)

where Is stands for the index set of training frames belonging to
speaker s. In order to break the symmetry among the bases, the
parameters of M and Λ are updated iteratively. This interleaving
training mode of parameter optimization is listed in Algorithm 1.

The canonical model M of MBA-NN is initialized by the
speaker-independent hybrid DNN-HMM. The hidden layers given
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Algorithm 1 Interleaving Training Mode of MBA-NN.
1: initialize the MBA-NN from the hybrid SI model
2: initialize λ(s) for all the training speakers
3: while not convergence do
4: updateM via back-propagation for one iteration
5: for s := 1 to S do
6: update λ(s) for one iteration
7: end for
8: end while

on this SI system are duplicated to build the multiple bases. The
speaker-dependent transform Λ could be initialized according to var-
ious techniques, e.g., by random values, from prior knowledge like
gender information or via automatic approaches such as i-vector.
However, to ensure that the initial performance is the same as the
hybrid SI system, the initial sum of λ(s)

1 , . . . , λ
(s)
K should be equal

to one,
K∑

k=1

λ
(s)
k = 1. (10)

The interleaving update ofM and Λ will not terminate until conver-
gence or the maximum iteration time is reached. In each round, the
parameters in the canonical modelM can be directly updated using
the standard error back propagation algorithm. For the basis weight
vector for each speaker, it can be updated via an analogous gradient
descent scheme as well.

This paper investigates a special version of MBA-NN that the
multiple bases are combined on the last hidden layer, in which the
shared parameters are given by

Ωshared =
{
WL,bL

}
. (11)

The output vector zL(x) right before the softmax activation can be
written as1

zL(x) = WL

{
K∑

k=1

λkh
L
k (x)

}
+bL = WLH(x)λ+bL, (12)

where
H(x) =

[
hL
1 (x), . . . ,hL

K(x)
]

(13)

is a matrix consisting of the outputs from different bases. An im-
portant merit of the interpolation on the last hidden layer is that, by
fixingM and deriving the loss function with respect to λ,

L(λ) =
∑
t∈Is

log
∑
j

exp
(
λT f(xt, j) + bLj

)
− λT f(xt, yt)− bLyt


(14)

where f(xt, j) = HT (xt)
(
wL

j

)T
and wL

j denotes the j-th row of
WL, it gives the same form as the log-linear model. Thus the opti-
mization problem of λ degrades to a convex one. It avoids getting
stuck into local minima, which is a common issue in the parame-
ter estimation of neural networks. In this paper, stochastic gradient
descent is used both in the training and adaptation phases to update
λ(s), the gradient with respect to λ(s) is given by

∂L
∂λ(s)

=
∑
t∈Is


∑

j exp
(
fT (xt, j)λ

(s) + bj

)
f(xt, j)

Z(xt)
− f(xt, yt)


(15)

1In Eq. 12 and 14, λ(s) is abbreviated as λ in which the superscript is
omitted.

where
Z(xt) =

∑
j̃

exp
(
fT (xt, j̃)λ

(s) + bj̃

)
. (16)

3.2. Adaptation

After the training phase, the transforms Λ belonging to the training
speakers are wiped out and only the canonical modelM is used for
adaptation. By keepingM to be fixed, the speaker-dependent basis
weight vector λ(s) is updated according to Eq. 15 until convergence.

The estimated λ̂
(s)

is then combined withM to decode testing ut-
terances.

4. EXPERIMENTS

The effectiveness of the proposed multi-basis adaptive neural net-
work was evaluated on two tasks: Broadcast News English (BNE)
and AURORA-4. On both tasks, the performance of rapid, utterance-
level, unsupervised adaptation was evaluated: the SI hybrid system
was initially used to generate decoding hypothesis and the associated
state alignments. The basis weight vector λ was then estimated on
these alignments for each utterance. Besides, the MBA-NN training
phase terminated when the criterion on the cross validation set began
to increase.

4.1. Broadcast News English

The training set for this task included the 144-hour 1996 & 1997
Hub-4 English Broadcast News Speech datasets (LDC97S44,
LDC98S71), containing 288 shows with approximately 8k speak-
ers. Both the testsets dev03 and eval03 of DARPA RT03 were
used for evaluation. The utterances of both testing sets were given
by automatic segmentation. Decoding was performed with the RT04
tri-gram language model.

The 39-dimensional PLP features with their first- and second-
order derivatives processed by both show-level cepstral mean nor-
malisation (CMN) and cepstral variance normalisation (CVN) were
firstly used to train a GMM-HMM model consisting of 6k tied tri-
phone states on the maximum likelihood estimation. It was further
extended to include the triple feature using HLDA [27] and discrim-
inatively trained on the MPE [28] criterion. This MPE model was
then used to give the state alignment for the SI Hybrid system. The
468-dimensional input feature to the neural network was formed by
52-dimensional PLP+∆+∆∆+∆∆∆ with a context window of 9
frames. The neural network consisted of five hidden layers with
1k neurons on each layer. The parameters of this DNN were ini-
tialized using layer-by-layer discriminative pre-training and further
fine-tuned by back-propagation. During the fine-tuning phase, 28
shows with about 600 speakers were used as the cross validation set.

Table 1. Word Error Rate Comparison on BNE.
System dev03 eval03
SI Hybrid 13.1 11.4
MBA-NN Gender Slct 12.6 11.3
MBA-NN 12.2 11.1

For MBA-NN, the training phase optimized speaker-level basis
weight vectors while the adaptation in evaluation was performed in
the utterance-level scheme. The 2-dimensional λ(s) for training s-
peaker s was initialized with its gender information ([1; 0] for male
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Fig. 3. The basis-weight-vector space given by the BNE training &
CV speakers and the DEV03 test utterances.

and [0; 1] for female). Table 1 reported the word error rate (W-
ER) achieved by the SI Hybrid system and the MBA-NN both on
dev03 and eval03. The MBA-NN model reduced the WER from
13.1% to 12.2%, 7% relative error rate reduction on dev03while on
eval03, it reduced the WER from 11.4% to 11.1%. The MBA-NN
Gender Slct represents the MBA-NN system after the first neural net-
work iteration when the speaker-dependent weights are fixed as the
gender initialization, which can be treated as the gender-dependent
hybrid baseline. The gender-basis hypothesis with a higher align-
ment likelihood was selected to form the decoding results of this
baseline. This gender-dependent model both gave a better perfor-
mance than the SI system on the two testing sets.

Figure 3 illustrated the basis-weight-vector space given by the
training / CV speakers and the dev03 test utterances. They laid in
a consistent location and formed a line close to λ1 + λ2 − 1 = 0.

4.2. AURORA-4

The AURORA-4 corpus is a medium vocabulary task derived from
Wall Street Journal (WSJ0). The 16kHz multi-style training set is
used in this series of experiments. It consists of 7138 utterances from
83 speakers, in which half are recorded using the primary Sennheiser
microphone whilst the other half are recorded by a number of sec-
ondary microphones. 6 different types of noises are added to this
training set with the SNR ranging from 10dB to 20dB. The eval-
uation dataset of AURORA-4 is based on the 330-utterance WSJ0
5K-word closed vocabulary test set from 8 speakers. It consists of
14 subsets, the clean set 01 (Set A), the noise set from 02 to 07
(Set B), the clean set with channel distortion 08 (Set C) and the
noise set with channel distortion from 09 to 14 (Set D). Set B and
D are corrupted by the same 6 types of noises as those in the training
data with randomly selected SNRs at 5dB ∼ 15dB. The decoding of
evaluation was performed with the standard WSJ0 bi-gram language
model.

A GMM-HMM system was initially trained using the maximum
likelihood criterion, which consisted of approximately 3k tied tri-
phone states with 8 Guassians per state. The feature for the GMM-
HMM system was the 39-dimensional PLP features with their ∆
and ∆∆, processed by utterance-level CMN. This system was fur-
ther extended to include ∆∆∆ using HLDA and discriminatively

Table 2. Word Error Rate Comparison on AURORA 4.
System #Bases A B C D Avg

SI Hybrid – 4.7 9.8 11.0 22.8 15.1

MBA-NN
2 4.3 8.9 9.6 21.3 14.0
4 4.3 8.8 9.6 21.5 14.0
6 4.3 8.9 9.6 21.5 14.0

MBA-NN
(REF)

2 4.2 8.6 9.3 20.7 13.5
4 4.1 8.4 9.0 20.2 13.2
6 3.9 8.3 8.9 20.1 13.1

trained on the MPE criterion. Instead of using the PLP feature2, the
72-dimensional FBANK with the first- and second- order dynamic
features processed by utterance-level CMN was used to train the SI
hybrid DNN-HMM system with the context dependent state align-
ments given by the MPE model. The neural network configuration
of the SI system is 648 × 1000 × 500 × 500 × 500 × 3k, with a
context window of 9 frames as input feature. The parameters of this
DNN are initialized using layer-by-layer discriminative pre-training
and further fine-tuned by back-propagation. During the fine-tuning
phase, 650 utterances belonging to 8 speakers are used as the cross
validation set.

The MBA-NN is then initialized with this SI hybrid model. In
this series of experiments, both the λ(s) estimation in the training
and testing phases are conducted in the utterance level. For training,
we first clustered the utterance i-vectors by k-means and divided the
utterances into 2,4 and 6 clusters. A 1-of-K vector (a vector with one
element containing a 1 and all other elements as 0) was specified
to each utterance as its initial basis weight vector, representing its
cluster index.

Table 2 summarized the decoding performance of different mod-
els. All three configurations outperformed the SI Hybrid baseline
with around 7% relative error reduction, dropping the word error
rate (WER) from 15.1% to 14.0%. However, as the dimension of ba-
sis weight vector increased, the system started to be more sensitive to
the quality of hypothesis: the systems with 4 and 6 bases gave slight-
ly worse performance on Set D. However, better performance was
obtained with more number of bases in oracle experiments which
used the reference transcription to estimate λ(s). As shown in the
MBA-NN(REF) part of Table 2, the system with 2, 4 and 6 bases
yielded 13.5%, 13.2% and 13.1% in WER, respectively.

5. CONCLUSION

This paper has introduced the multi-basis adaptive neural network,
a novel topology of neural network for rapid adaptation in speech
recognition. The adaptation scheme on MBA-NN only requires a
simple but compact representation of a speaker, referred to as the
basis weight vector λ. Thus rapid adaptation scenarios with limited
data could be resolved within this framework. The performance of
utterance-level unsupervised adaptation is evaluated on the Broad-
cast News English and the AURORA-4 datasets. On both tasks, the
improvement of recognition performance is obtained over the SI hy-
brid DNN-HMM baseline. Future work will look at the performance
of different output combination schemes. Rather than interpolation,
combining the bases with multiple linear transforms will be a proper
extension.

2On this task, the DNN with the filter bank feature yielded a better per-
formance comparing to that with PLP or MFCC.
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