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ABSTRACT

State-of-the-art automatic speech recognition systems model the re-
lationship between acoustic speech signal and phone classes in two
stages, namely, extraction of spectral-based features based on prior
knowledge followed by training of acoustic model, typically an arti-
ficial neural network (ANN). In our recent work, it was shown that
Convolutional Neural Networks (CNNs) can model phone classes
from raw acoustic speech signal, reaching performance on par with
other existing feature-based approaches. This paper extends the
CNN-based approach to large vocabulary speech recognition task.
More precisely, we compare the CNN-based approach against the
conventional ANN-based approach on Wall Street Journal corpus.
Our studies show that the CNN-based approach achieves better
performance than the conventional ANN-based approach with as
many parameters. We also show that the features learned from raw
speech by the CNN-based approach could generalize across different
databases.

Index Terms— automatic speech recognition, convolutional
neural networks, raw signal, feature learning

1. INTRODUCTION

State-of-the-art automatic speech recognition (ASR) systems typi-
cally divide the task into several sub-tasks, which are optimized in an
independent manner [1]. In a first step, the data is transformed into
features, usually composed of a dimensionality reduction phase and
an information selection phase, based on the task-specific knowledge
of the phenomena. These two phases have been carefully hand-
crafted, leading to state-of-the-art features such as mel frequency
cepstral coefficients (MFCCs) or perceptual linear prediction cep-
stral features (PLPs). In a second step, the likelihood of subword
units such as, phonemes is estimated using generative models or
discriminative models. In a final step, dynamic programming tech-
niques are used to recognize the word sequence given the lexical and
syntactical constraints.

Recent advances in machine learning have made possible sys-
tems that can be trained in an end-to-end manner, i.e. systems where
every step is learned simultaneously, taking into account all the other
steps and the final task of the whole system. It is typically referred to
as deep learning, mainly because such architectures are usually com-
posed of many layers (supposed to provide an increasing level of ab-
straction), compared to classical “shallow” systems. As opposed to
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“divide and conquer” approaches presented previously (where each
step is independently optimized) deep learning approaches are often
claimed to lead to more optimal systems, as they alleviate the need of
finding the right features by instead training a stack of features in a
end-to-end manner, for a given task of interest. While there is a good
success record of such approaches in the computer vision [2] or text
processing fields [3], deep learning approaches for speech recogni-
tion still rely on spectral-based features such as MFCC [4]. Some
systems have proposed to learn features from “intermediate” repre-
sentation of speech, like mel filter bank energies and their temporal
derivatives.

In our recent study [5], it was shown that it is possible to esti-
mate phoneme class conditional probabilities by using raw speech
signal as input to convolutional neural networks [6] (CNNs). On
TIMIT phoneme recognition task, we showed that the system is able
to learn features from the raw speech signal, and yields performance
similar or better than conventional ANN, more specifically multi-
layer perceptron (MLP), based system that takes cepstral features as
input.

The goal of the present paper is to ascertain two aspects of the
CNN-based system: its scalability to large vocabulary speech recog-
nition and the invariance of the features learned from raw speech
across domains. For the first aspect, we compare the CNN-based
approach against the conventional ANN-based approach with differ-
ent architectures on Wall Street Journal corpus. Our studies show
that the CNN-based approach yields better performance than ANN-
based approach with as many parameters. For the second aspect, we
propose a cross-domain experiment, where the features learned on
one database are used on another one. We show that these features
could generalize given enough training data.

The remainder of the paper is organized as follows. Section 2
presents a brief survey of related literature. Section 3 presents the
architecture of the proposed system. Section 4 presents the experi-
mental setup and Section 5 presents the results. Section 6 presents
the discussion and concludes the paper.

2. RELEVANT LITERATURE

Hybrid HMM/ANN approach was originally developed with ANNs
that have single hidden layer and classify context-independent
phonemes given cepstral feature as input. More recently, ANNs
with deep learning architectures, more precisely, deep belief net-
work or deep neural networks (DNNs) [7, 8], which can yield better
system than a single hidden layer MLP have been proposed to ad-
dress various aspects of acoustic modeling. More specifically, use
of context-dependent phonemes [9, 10]; use of spectral features
as opposed to cepstral features [4, 11]; CNN-based system with

4295978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



Raw speech
input x Convolution

Max
pooling

tanh(·)

Filter stage (feature learning) × N

Linear tanh(·) Linear SoftMax

Classification stage (modeling)

p(i|x)

Fig. 1. Convolutional Neural Network. Several stages of convolution/pooling/tanh might be considered. Our network included 3 stages. The
classification stage can have multiple hidden layers.

mel filter bank energies as input [12, 13]; combination of different
features [14]; CNN-based phoneme recognition system with raw
speech signal input trained in end-to-end manner [15]; multichannel
processing using CNNs [16], to name a few.

Features learning from raw speech using neural networks-based
systems has been investigated in [17]. In this approach, the learned
features are post-processed by adding their temporal derivatives and
used as input for another neural network. In comparison to that,
in our approach, the features are learned jointly with the acoustic
model. A recent study investigated acoustic modeling using raw
speech as input to a DNN [18]. The study showed that raw speech
based system is outperformed by spectral feature based system.

3. CONVOLUTIONAL NEURAL NETWORKS

3.1. Architecture

The proposed network is given a sequence of raw input signal, split
into frames, and outputs a score for each classes, for each frame.
It is presented in Figure 1. The network architecture is composed
of several filter stages, followed by a classification stage. A filter
stage involves a convolutional layer, followed by a temporal pool-
ing layer and a non-linearity (tanh()). Our optimal architecture
included three filter stages. Processed signal coming out of these
stages are fed to a classification stage, which in our case is a multi-
layer perceptron, which can have multiple hidden layers. It outputs
the conditional probabilities p(i|x) for each class i, for each frame
x.

3.2. Convolutional layer

While “classical” linear layers in standard MLPs accept a fixed-size
input vector, a convolution layer is assumed to be fed with a se-
quence of T vectors/frames: X = {x1 x2 . . . xT }. A convo-
lutional layer applies the same linear transformation over each suc-
cessive (or interspaced by dW frames) windows of kW frames. For
example, the transformation at frame t is formally written as:

M

 xt−(kW−1)/2

...
xt+(kW−1)/2

 , (1)

whereM is a dout×din matrix of parameters, din denotes the input
dimension and dout denotes the output dimension of each frame. In
other words, dout filters (rows of the matrix M) are applied to the
input sequence.

3.3. Max-pooling layer

These kind of layers perform local temporal max operations over
an input sequence. More formally, the transformation at frame t is

written as:

max
t−(kW−1)/2≤s≤t+(kW−1)/2

xds ∀d (2)

with x being the input, kW the kernel width and d the dimen-
sion. These layers increase the robustness of the network to minor
temporal distortions in the input.

3.4. Network training

The network parameters θ are learned by maximizing the log-
likelihood L, given by:

L(θ) =

N∑
n=1

log(p(in|xn, θ)) (3)

for each input x and label i, over the whole training set, with re-
spect to the parameters of each layer of the network. Defining the
logsumexp operation as: logsumexpi(zi) = log(

∑
i e

zi), the
likelihood can be expressed as:

L = log(p(i|x)) = fi(x)− logsumexp
j

(fj(x)) (4)

where fi(x) described the network score of input x and class i. Max-
imizing this likelihood is performed using the stochastic gradient as-
cent algorithm [19].

4. EXPERIMENTAL SETUP

In this section, we present the two studies, the databases, the base-
lines and the hyper-parameters of the networks.

4.1. Study 1: Large vocabulary speech recognition

We evaluate the scalability of the proposed system on a large vocab-
ulary speech recognition task on the WSJ corpus. The CNN-based
system is used to perform the feature learning and acoustic modeling
steps, by computing the posterior probabilities of context-dependent
phonemes from raw speech.

The decoder is an HMM. The scaled likelihoods are estimated
by dividing the posterior probability by the prior probability of each
class, estimated by counting on the training set. The hyper parame-
ters such as, language scaling factor and the word insertion penalty
are determined on the validation set.

4.2. Study 2: Feature invariance

The filter stage of the CNN-based system can be seen as a feature
extractor or matching filters [5]. In order to ascertain the invariance
capability of these filters, we propose a cross-domain experiment,
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where the filter stage is first trained on one domain, then it is fixed
and used as feature extractor on another domain. More precisely, we
propose the following procedure, as illustrated in Figure 2:

1. The whole network is trained on one database.

2. The weights of every convolutional layer are fixed, and only
the classification stage, as presented in Figure 1, is trained on
a second database.

For the experiments, in addition to the WSJ corpus, we use the
TIMIT corpus. We present two studies. First, a word recognition
study on WSJ with the features learned on TIMIT corpus and a
second study on TIMIT phoneme recognition task with the features
learned on WSJ corpus. The network has the same hyper-parameters
in both cases. For the phoneme recognition study, the decoder is a
standard HMM decoder, with constrained duration of 3 states, and
considering all phonemes equally probable.

Raw speech
input x

Filter stage
Classification

stage

Domain 1

Full training

p(i|x)

Raw speech
input x

Filter stage
Classification

stage

Domain 2

TrainingFixed

p(i|x)

Fig. 2. Illustration of the cross-domain experiment. The filter stage
is trained on domain 1, then used as feature extractor on domain 2.

4.3. Databases

The SI-284 set of the Wall Street Journal (WSJ) corpus [20] is
formed by combining data from WSJ0 and WSJ1 databases, sam-
pled at 16 kHz. The set contains 36,416 sequences, representing
around 80 hours of speech. Ten percent of the set was taken as
validation set. The Nov’92 set was selected as test set. It contains
330 sequences from 10 speakers. The dictionary was based on
the CMU phoneme set, 40 context-independent phonemes. 2776
tied-states were used in the experiment. They were derived by clus-
tering context-dependent phones in HMM/GMM framework using
decision tree state tying. The dictionary and the bigram language
model provided by the corpus were used. The vocabulary contains
5000 words. The HMM/GMM system yields a performance of 5.1%
word error rate. It is comparable to the performance reported in
literature [21].

The TIMIT acoustic-phonetic corpus consists of 3,696 training
utterances (sampled at 16kHz) from 462 speakers, excluding the SA
sentences. The cross-validation set consists of 400 utterances from
50 speakers. The core test set was used to report the results. It con-
tains 192 utterances from 24 speakers, excluding the validation set.
The 61 hand labeled phonetic symbols are mapped to 39 phonemes
with an additional garbage class, as presented in [22].

4.4. Features

Raw features are simply composed of a window of the temporal
speech signal (hence, din = 1 for the first convolutional layer). The
window is normalized such that it has zero mean and unit variance.
We also performed several baseline experiments, with MFCC as in-
put features. They were computed (with HTK [23]) using a 25 ms
Hamming window on the speech signal, with a shift of 10 ms. The
signal is represented using 13th-order coefficients along with their
first and second derivatives, computed on a 9 frames context.

4.5. Baseline systems

We compare our approach with the standard HMM/ANN system us-
ing cepstral features. We train ANNs with two different architec-
tures. More precisely, we use an ANN with one single hidden layer,
referred to as ANN-1L and an ANN with three hidden layers, re-
ferred to as ANN-3L. The input to the ANNs are MFCC with several
frames of preceding and following context. The number of context
frame was tuned on the validation set. We do not pre-train the net-
work.

4.6. Networks hyper-parameters

The hyper-parameters of the network are: the input window size
win, corresponding to the context taken along with each example,
the kernel width kWn, the shift dWn and the number of filters dn
of the nth convolution layer, the pooling width kWmp of maxpool-
ing layers and the hidden layers width. They were tuned by early-
stopping on the validation set. Ranges which were considered for the
grid search are reported in Table 1. It is worth mentioning that, for
the first layer of convolution, the best performance was found with
a kernel width (kW1) of 50 samples (as for this layer, each frame
contains only one sample), corresponding to 3 ms of speech, and a
shift of 10 samples.

We train two architectures: the first one is composed of 3 convo-
lutional layers and 1 hidden layer and is referred to as CNN-1L. The
second one is composed of 3 convolutional layers and 3 hidden lay-
ers and is referred to as CNN-3L. The best performance was found
with: 310 ms of context, 5 frames kernel width, 80, 60 and 60 fil-
ters, 500 hidden units and 2 pooling width. The second architecture
has the same hyper-parameters, with 1000 hidden units for the three
hidden layers. For the baselines, the ANN-1L uses 1000 nodes for
the hidden layer and 9 frames as context. The ANN-3L system uses
1000 nodes for each hidden layer and 9 frames as context. For the
cross-domain study, the classifier stage has one hidden layer of 500
units for each case. The experiments were implemented using the
torch7 toolbox [24].

Table 1. Network hyper-parameters

Parameters Units Range
Input window size (win) ms 100-700

Kernel width of the first conv. (kW1) samples 10-90
Kernel width of the nth conv. (kWn) frames 1-11

Number of filters per kernel (dout) filters 20-100
Max-pooling kernel width (kWmp) frames 2-6

Number of hidden units in the classifier units 200-1500
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5. RESULTS

5.1. Large vocabulary speech recognition

The results for the LVCSR study, expressed in terms of Word Error
Rate (WER) for the baseline systems and the proposed system, are
presented in Table 2, along with the number of parameters of the
network. As it can be observed, the CNN-1L based system outper-
forms the ANN-1L based baseline system, and the CNN-3L based
system also outperform the ANN-3L based system. with as many
parameters. Furthermore, the CNN-1L based system performance is
comparable to the ANN-3L based system. These results indicate that
CNNs result in simpler features which can be classified easily when
compared to MFCC features.

Table 2. Word Error Rate on the Nov’92 testset
Features System #Params. WER
MFCC ANN-1L 3.1M 7.0 %
MFCC ANN-3L 5.6M 6.4 %
RAW CNN-1L 3.1M 6.7 %
RAW CNN-3L 5.6M 5.6 %

5.2. Features invariance

The results for the cross-domain study are presented in Table 3. On
the TIMIT corpus, the features trained on WSJ yield similar perfor-
mance with the features trained on TIMIT. On the WSJ corpus, the
features trained on TIMIT yield lower performance. These results
suggest that there is some level of dependency on the data used for
training the CNN. More specifically, the low performance on WSJ
corpus could be explained by the fact that TIMIT is small corpus
with few amount of variability.

We compared the filters learned on WSJ corpus with the filters
learned on TIMIT corpus. This was done by: computing the mag-
nitude of the Fourier transform of the filters of the first convolution
layer, learned on TIMIT and on WSJ; normalizing it; and finding the
closest filter using symmetric Kullback-Lieber divergence as metric.
Figure 3 presents normalized frequency responses of a few filters
learned on WSJ (on the left column) and the closest filters learned
on TIMIT (on the right column). It can be observed that the peaks
are centered around the same frequency between the two corpora,
although there is a difference in the spectral balance, specially see
Figure 3(b). These differences in the spectral balance could possibly
be related to the variability in the data across domains and explain
performance differences. This needs further investigation and is part
of our future work.

Table 3. Cross-domain results. The TIMIT results are given in PER,
and the WSJ results are given in WER.

Test domain Features Error Rate
TIMIT Learned on TIMIT 32.3 %

Learned in WSJ 32.4 %
WSJ Learned on WSJ 6.7 %

Learned on TIMIT 10.1 %
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Fig. 3. Examples of three close pairs of filters learned. The left
column is on WSJ, the right on TIMIT.

6. CONCLUSION

In this paper, we investigated the scalability of an ASR approach
based on CNNs, which takes as input the raw speech signal, to large
vocabulary task. Our studies on WSJ corpus showed that the CNN-
based system is able to achieve better performance than the ANN-
based system, which takes standard cepstral features as input. These
findings are inline with the phoneme recognition studies reported
on TIMIT corpus in [5]. In comparison to [18], where poor ASR
performance was achieved with raw speech signal as input to DNN,
our LVCSR study indicates that CNNs have an edge over DNNs in
modeling raw speech signal. We also studied the generalization ca-
pability of the features learned by the CNN. The cross-domain ex-
periment indicated that the features learned on large amount of data
could generalize across domains.

Our future work will focus on studying the language indepen-
dence of the CNN-based approach, as the standard cepstral feature
extraction process does not have any such dependency.
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