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ABSTRACT

In the hybrid approach, neural network output directly serves as hid-
den Markov model (HMM) state posterior probability estimates. In
contrast to this, in the tandem approach neural network output is used
as input features to improve classic Gaussian mixture model (GMM)
based emission probability estimates. This paper shows that GMM
can be easily integrated into the deep neural network framework. By
exploiting its equivalence with the log-linear mixture model (LMM),
GMM can be transformed to a large softmax layer followed by a
summation pooling layer. Theoretical and experimental results in-
dicate that the jointly trained and optimally chosen GMM and bot-
tleneck tandem features cannot perform worse than a hybrid model.
Thus, the question ,,hybrid vs. tandem” simplifies to optimizing the
output layer of a neural network. Speech recognition experiments
are carried out on a broadcast news and conversations task using up
to 12 feed-forward hidden layers with sigmoid and rectified linear
unit activation functions. The evaluation of the LMM layer shows
recognition gains over the classic softmax output.

Index Terms— Log-linear, mixture model, LMM, GMM,
DNN, bottleneck, neural network, hybrid, tandem, ASR

1. INTRODUCTION

Deep neural networks (DNN) have become an essential part of the
acoustic model of recent automatic speech recognition (ASR) sys-
tems. Estimating state posterior probabilities directly, the hybrid ap-
proach has shown enormous gains over old-fashioned GMMs trained
only on cepstral features. GMMs can be improved when trained on
the output or a hidden layer of a neural network (NN) which effec-
tively results in two acoustic models in tandem. In state-of-the-art
systems the two approaches perform head-to-head in large vocabu-
lary ASR tasks. So far only few works addressed the joint training
of the tandem models. Therefore, this paper focuses on a consis-
tent tandem approach. As will be shown, the GMM can be easily
integrated into the DNN framework through a generalized softmax
layer, which could also indicate why the two approaches can achieve
similar performance.

The NN based HMMs were proposed in the early 90’s [1]. It
has been also discovered that training of the hybrid models with tens
of thousands of allophone targets is still feasible but only with low-
rank factorization of the last layer [2],[3]. This can be achieved by a
linear bottleneck (BN) layer. The probabilistic tandem approach was
introduced in [4], and was extended by the bottleneck concept pro-
posed by [5]. Linear BN features for tandem approach were inves-
tigated in [6]. Previous work in [7] also addressed the joint training

of GMM and shallow BN features using the (sequence) MMI crite-
rion. The author calculated the derivatives of the error function w.r.t.
GMM parameters directly and applied the chain rule to update the
GMM simultaneously with the BN features. In this paper, we fol-
low a different approach to integrate the GMM into DNN. The work
of [8] and [9] showed that log-linear model with quadratic features
corresponds with Gaussian model. Similarly, GMM and log-linear
mixture model (LMM) are also equivalent [10]. Since the softmax
layer of the NN is a log-linear model, its substitution with an LMM
is a natural way of integrating GMM into the DNNs.

Therefore, in this work we exploit that GMMs with pooled co-
variance matrix can be easily transformed to LMM by already well-
known neural network elements: linear, softmax, and sum- or max-
pooling layer. The joint training of BN and GMM is then addressed
through a generalized softmax layer and compared to various hybrid
models.

The paper is organized as follows. In Section 2 we give a
short overview of the log-linear mixture modeling and its relation
to GMM, further, the softmax layer with hidden variables is also
introduced. Section 3 gives details about our experimental setup.
Experimental results are presented in Section 4. The paper closes
with conclusions in Section 5.

2. THE LOG-LINEAR MIXTURE LAYER

2.1. The log-linear models

Log-linear models are discriminative models directly estimating pos-
terior probabilities of class s given the feature vector x ∈ RM:

pθ(s|x) =
exp

(
wTs f (x) + bs

)∑
s′

exp
(
wTs′f (x) + bs′

) (1)

with model parameters θ = {ws, bs}, where ws ∈ RN and bs ∈ R
are state specific parameters. The f(x) : RM → RN corresponds
to the feature function such as linear, polynomial or any non-linear
feature mapping, e.g. another tandem model [11, 12, 13, 14, 15].
Within the neural network framework Eq. 1 corresponds to the soft-
max output layer: ws, bs form the last weight matrix and bias vector,
the rest of the network up to the output of the last hidden layer forms
the feature function f . In HMM-based ASR the estimated posterior
probabilities are transformed to likelihood via the Bayes-rule (hybrid
approach) [1].

The model parameters are often trained by maximizing the em-
pirical conditional likelihood (also known as cross entropy (CE) or
maximum mutual information). In this paper our targets s are tied-
triphone states and we use a frame-wise form of the criterion. The
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alignment between the feature vectors and the HMM states is kept
fixed.

A major advantage of log-linear models is that the above cri-
terion is convex. By applying the chain rule deep neural network
basically trains the classification layer and feature function jointly,
making the optimization non-convex.

As has been shown, the posterior form of Gaussian model results
in a log-linear model with linear and quadratic feature functions and
vice versa [9]. In a special case, if classes share the same covariance
matrix Σ only linear features remain. Thus, in the NN framework
the softmax layer is equivalent to a discriminatively trained single
Gauss model with pooled covariance matrix:

pθ(s|y) =
p(s)N (y|µs,Σ)∑

s′
p(s′)N (y|µs′ ,Σ)

=
exp(wTs y + bs)∑

s′
exp(wTs′y + bs′)

(2)

where y corresponds to the observation vector e.g. LDA transformed
MFCC, N (y|µs,Σ) denotes the normal distribution of y in class s
with mean vector µs, and the pooled full covariance matrix is Σ. For
the conversion of the generative model parameters to the log-linear
parameters we refer to [10], and see the generalized case below.

2.2. The log-linear mixture models

Log-linear model with hidden variables is also called log-linear mix-
ture model (LMM):

pθ(s|x) =
∑
i

pθ(s, i|x) =

∑
i

exp
(
wTsif (x) + bsi

)
∑
s′,i′

exp
(
wTs′i′f (x) + bs′i′

) (3)

where i is the hidden variable, wsi and bsi denotes the hidden state
and class dependent parameters. It has also been shown that the pos-
terior form of GMM with a given class prior distribution corresponds
to this model [16, 10]. Again, a covariance matrix Σ globally shared
between all mixture components results only in linear features:

p(s)
∑
i

p(i|s)N (y|µsi,Σ)∑
s′
p(s′)

∑
i

p(i|s′)N (y|µs′i,Σ)
=

∑
i

exp(wTsiy + bsi)∑
s′,i

exp(wTs′iy + bs′i)
(4)

where p(i|s) denotes the mixture component weights and µsi is the
mean vector of the ith Gaussian mixture component of state s. The
conversion from GMM to LMM can be performed with the follow-
ing equations:

bsi = −1

2
µTsiΣµsi + ln p(s) + ln p(i|s)

wsi = Σ−1µsi

(5)

During the ASR decoding process the logarithm of the acoustic
scores is accumulated. Using maximum approximation enables the
fast computation of the GMM log-likelihood [17]. Because the hid-
den variable in Eq. 3 simply corresponds to the mixture index, the
approximation is equal to finding the maximum term of the numera-
tor.

2.3. Softmax layer with hidden variable
Grouping the parameters of a state, Eq. 3 can be realized by al-
ready existing NN building blocks as a softmax layer followed by
a sum-pooling over a region. In the case of maximum approxima-
tion the last layer becomes a max-pooling. The softmax layer with

hidden variables is more general than the classic output layer em-
ployed in current NNs. In the tandem approach, the feature func-
tion f(x) is equal to the BN feature extraction and the GMM are
trained on y .

= f(x). Transforming a GMM (pretrained with e.g.
maximum-likelihood criterion) to a LMM allows a natural way to
train the acoustic model and BN features jointly. Figure 1 shows the
proposed NN hierarchy for a consistent tandem approach. As can be
seen, a linear BN tandem GMM can be easily converted to a very
similar structure proposed in [2].

Using the maximum approximation, it is possible to train the
model with the Expectation-Maximization (EM) algorithm: fixing
the mixture index i for each observation x the maximization step
simplifies to a classic neural network training. During the expec-
tation step the observation is realigned to mixture index i. The
EM steps of NN with hidden variables can also be combined with
the EM steps of the HMM models. NNs are usually trained by
stochastic gradient (SGD) methods even if the activation functions
are non-differentiable on a finite set of points, like rectified linear
units (ReLU), or max-pooling [18, 19]. Therefore, we limited our
investigation only to direct training of the model with SGD. The
number of hidden states and the initial parameters were determined
by maximum likelihood (ML) estimated GMM according to Eq. 5.
Thus, the training of a bottleneck Multi Layer Perceptron (BN-MLP)
and the GMM can be considered as pretraining steps of a more
complex MLP. The training of the generalized softmax-layer from
scratch e.g. with discriminative splitting algorithm [20] was not in-
vestigated.

In preliminary experiments we observed that the state poste-
rior distribution obtained by ML-GMM, especially by models with
higher number of densities, are much sharper than the output of CE
trained models. In order to fit the generative model parameters to the
CE criterion the posteriors should be smoothed with α < 1 before
DNN-training:

wsi → α · wsi bsi → α · bsi (6)

In the case of LMM with maximum approximation this is equivalent
to pθ(s|x)α and does not influence the classification accuracy (see
Figure 2).
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Fig. 1. The proposed neural network structure for a consistent tan-
dem BN and GMM training: softmax layer with hidden variables.

It should be mentioned that the softmax layer is much larger due
to the hidden variable, e.g. a GMM trained on 4500 tied states results
in over 1 million (!) nodes after 8 splits. Therefore, an efficient GPU
implementation of the softmax function is crucial. Furthermore, due
to limited available memory on GPU, the usual mini-batch was also
processed in sub-batches wherever it was possible. Because of the
huge softmax layer, the low-rank factorization of the last weight ma-
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trix through linear BN layer is inevitable as it was proposed also for
NN with more than 10k outputs [2].

For decoding, the last layer can be transformed back to a GMM.
And beside the maximum approximation, further speed-up in acous-
tic score calculation can be expected after applying density preselec-
tion methods.

3. EXPERIMENTAL SETUP

The proposed way of training BN features and GMM jointly was
investigated on a broadcast news and conversation task. Similar to
[21], the training of the GMM and DNN acoustic models was carried
out on a Viterbi alignment generated by our best performing evalu-
ation system. For our research purpose we defined a 50-hour subset
of the full corpus. The corpus statistics can be found in Table 1. The
recognition lexicon contained 150k words. For further details about
the task and language model estimation we refer to [22] and [23].

Unless otherwise stated, fast-VTLN and segmentwise mean-
and-variance normalized 16-dimensional MFCCs are extracted [24].
The GMMs used pooled, diagonal covariance matrix and were
trained with ML criterion using maximum approximation. The
number of parameters roughly doubled after each split. The MLP
and GMM model 4500 tied context-dependent triphone states. As
input, 17 frames of MFCC are fed into the MLP. The MLP consists
of 6 non-BN hidden-layers with 2000 nodes each.

During the optimization of framewise cross-entropy (CE) objec-
tive function by SGD, the mini-batch size was fixed to 512 frames.
The networks were initialized by discriminative pretraining accord-
ing to [25]. Momentum term and l2 regularization were applied
only with ReLU MLPs. In order to prevent overfitting and adjust
the learning rate, 10% of the training corpus was selected for cross-
validation (CV). To control the training procedure, we used a slightly
modified newbob learning rate scheduling strategy. The learning rate
was kept fixed as long as the frame error rate (FER) improved by at
least 0.1%. In the subsequent epochs the learning rate was halved
until the FER improvement was less than 0.1%. In addition, the
ramping state was reset if the improvement was over 0.15%. Since
the GMM model was later merged into the DNN through the LMM
conversion, the CV set was discarded during the ML-GMM training.

The softmax layer with hidden variables was always initialized
by our GMM. For this purpose hybrid models with linear BN right
before the output were also trained. Then, the GMMs were trained
only on this BN features without any further processing (PCA or
LDA, windowing) or concatenation with cepstral features to keep
the structure of acoustic models consistent. The ultimative compari-
son of the hybrid and the proposed consistent tandem approach after
sequence discriminative training is not addressed here.

4. EXPERIMENTAL RESULTS

Before the joint training of the GMM and BN features the model
conversion was studied. According to our observation α is inversely
proportional to the BN size. In addition to the smoothing (Eq. 6),

Table 1. Corpus statistics

corpus words frames hours LM OOV
[K] [M] ppl. rate[%]

train small 500 15.3 50
large 2700 75.2 250

dev 41 1.3 3.7 123 0.4
eval 35 1.2 3.3 136 0.4

Table 2. Baseline sigmoid and ReLU 6-hidden-layer hybrid systems
with and without linear BN. Results are in WER [%].

Sigmoid ReLU

Train BN
size

64 128 256 512 - 64 128 256 512 -

small dev 19.2 18.9 19.0 19.4 19.4 18.2 18.1 17.9 17.8 17.7
eval 24.9 24.6 24.7 25.3 25.3 24.5 23.8 23.8 23.6 23.5

large dev 15.8 15.6 15.4 15.5 15.6 15.9 15.6 15.7 15.4 15.7
eval 20.7 20.8 20.6 20.7 20.8 21.2 20.8 21.2 20.7 20.9
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Fig. 2. The effect of scaling the weight of the ML-GMM initialized
LMM. Frame error rate (FER [%]) and cross-entropy (CE) were
measured on the CV set. The GMM with 16 components/state was
trained on BN-MLP features. (a) 64-dimensional sigmoid BN fea-
tures (small scale); (b) 512-dimensional ReLU bottleneck features
(large scale).

the state and mixture priors should also be rescaled to better fit the
GMM-initialized LMM to the CE criterion. As can be seen in Fig. 2,
the ML trained GMM can achieve a similar objective function value,
but performs few percents relative worse than the discriminative (sin-
gle Gauss) hybrid model. The gap increased with more data and
complex models but could be reduced with more splits. Further-
more, the exact model (sum-pooling) achieved clearly better frame
accuracy and objective function value than the model with maximum
approximation. Although the smoothing was not always necessary
– could be learned by the network within the first epochs –, without
it we often ended up in convergence problem with larger GMMs.

Table 2 shows the baseline hybrid systems with different degree
of low-rank factorization of the last matrix. Besides the parameter
reduction, the insertion of linear BN before the softmax layer always
resulted in a gain with sigmoid NN. Applying low-rank factorization
with ReLU, we observed degradation on the small training set.

4.1. Small scale experiments
In the first experiments we investigated the joint training of BN-
GMM/LMM with different feature size and complexity (Table 3).
First experiments were carried out with usual BN size (64 dim) (rows
1-9). The joint training of BN-GMM was tested with single Gaus-
sian (split-0) due to its model equivalence to our baseline (column
1 in Table 2). As should be expected, the CE training resulted in
almost the same performance (row 2 of Table 3). Increasing the
GMM complexity, we measured the best result after ML training
with split-8 model (row 7). However, after the discriminative train-
ing much less components per state were sufficient, split-4 model
showed the lowest WER (row 6). Table 3 also shows that CE training
of the exact model always resulted in better WER than using maxi-
mum approximation (row 4↔5 or 8↔9). We obtained 1% absolute
WER improvement over the best ML model after the CE based joint
model training. Training only the LMM layer, the best result was
achieved again by a split-4 model and reached 19.1% WER (row 4).
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Table 3. Recognition results with classic and jointly trained tandem
GMM and BN features (50h). Maximum approximation (+) applied
optionally during the training or recognition.

BN
size

BN-GMM/LMM WER
[%]split Joint

training
Training
criterion

Max. approx.
train recog. dev eval

Si
gm

oi
d

64

0 no ML 22.4 28.7
yes CE 19.2 24.8

4
no ML + + 20.2 26.3

CE
19.1 24.7

yes + + 18.9 24.8
18.5 24.2

8
no ML + + 19.5 25.4

yes CE + + 19.2 25.2
19.0 24.9

128 4

no ML + + 20.8 26.6

yes CE
+ + 18.9 24.7

18.3 24.0
+ 18.1 23.9

8 no ML + + 20.2 25.8

R
eL

U

256

2
no ML + + 19.6 25.8

yes CE + + 18.1 24.0
17.5 23.0

5
no ML + + 18.5 24.4

yes CE 17.4 23.3
+ 17.2 22.9

8 no ML + + 18.7 24.3

This result indicates that the joint training of BN and GMM/LMM
is necessary. Further experiments were carried out with larger, 128-
dimensional BN (rows 10-14) features. In contrast to the ML, after
the joint training we obtained a better performance (row 12). Ap-
plication of the maximum approximation only during the recogni-
tion led to some recognition gains (row 13). Compared to the best
sigmoid baseline result in Table 2, our MLP with the generalized
softmax layer outperformed our baseline by 0.7% absolute in WER.

The experiments with ReLU were carried out only with BN of
256 nodes, and confirmed the observations made with sigmoid MLPs
(rows 15-21). The consistent CE training of ReLU BN-MLP reached
about 0.5% absolute lower WER compared to the corresponding re-
sult in Table 2. For further comparison, we also optimized the output
of the hybrid systems using 256 dimensional BN: a MLP with 12k
outputs resulted in 17.5% WER on the development set.

4.2. Large scale experiments
Using 250 hours of training data, the joint BN-GMM training was
investigated with two types of MLP. In order to measure the ef-
fect of more data, first a 6-hidden-layer sigmoid MLP was trained.

Table 4. Recognition results with classic and jointly trained tandem
GMM and BN features (250h).

BN
size

BN-GMM/LMM WER
[%]split Joint

training
Training
criterion

Max. approx.
train recog. dev eval

Si
gm

oi
d

64 5
no ML + + 17.3 22.8

yes CE 15.3 20.6
+ 15.4 20.4

10 no ML + + 16.4 21.3

256 5
no ML + + 17.9 23.6

yes CE 15.0 20.2
+ 14.9 20.2

8 no ML + + 16.8 22.1

Table 5. Comparison of hybrid and jointly trained BN-GMM sys-
tems using 12-layer ReLU MLP.

System #output split criterion WER [%]
dev eval

Hybrid 4.5k - CE
13.3 18.1

+low-rank output 13.5 18.2
12.0k 13.0 17.7

BN tandem 4.5k 8 ML 14.2 19.0
+joint training 4 CE 13.1 17.8

According to Table 2, the sigmoid MLP performed best with 256-
dimensional BN layer. Although the ML trained high dimensional
BN tandem performed significantly worse than a lower dimensional
features (row 1↔5, 4↔8 in Table 4), we focused on the results after
the CE based joint training. Similar to small scale, the larger BN
pays off after CE training (row 2 and 6), and maximum approxima-
tion does not hurt the recognition performance (row 3 and 7).

Aiming at the best WER, the second set of large scale exper-
iments was carried out with a 12-layer ReLU MLP trained on 19
frames of 50-dimensional GT features [26]. About 2% absolute im-
provement is attributable to these modification steps. Again, hy-
brid systems with optimized output size (up to 25k) were also com-
pared to our jointly trained BN-GMM system. The results are sum-
marized in Table 5. The generalized softmax (jointly trained BN-
GMM) outperformed our very strong hybrid baseline. The hybrid
system achieved slightly better results with only optimized output
size (12k). However, the increased output size could be also applied
on the BN tandem system, and also the split size was not optimized
at this level of NN complexity. Although on large scale the consis-
tent tandem and the hybrid models performed equally, the hidden
variables within the model allowed less target states with tandem
approach, thus, could result in a smaller search space.

5. CONCLUSIONS

We have shown that the tandem approach can be considered as a
softmax layer with hidden variables. The integration of the GMM
into the DNN framework results in a deep and wide structure. As
has been demonstrated, the BN-MLP training and tandem approach
can simply be considered as an initialization step of this more com-
plex model. On small scale, the joint training of tandem BN-GMM
through generalized softmax layer always resulted in better recog-
nition performance than any of our hybrid baselines. Furthermore,
large scale experiments verified that the proposed BN-LMM model
with hidden variables could achieve similar performance with fewer
output targets than a classic hybrid system.

Since our current best tandem systems are built on hierarchical
BN structures [27], in the future work our research will be extended
to more complex BN features. The effect of sequence discriminative
training will be also investigated.
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