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ABSTRACT

We explore alternative acoustic modeling techniques for large
vocabulary speech recognition using Long Short-Term Memory re-
current neural networks. For an acoustic frame labeling task, we
compare the conventional approach of cross-entropy (CE) training
using fixed forced-alignments of frames and labels, with the Con-
nectionist Temporal Classification (CTC) method proposed for la-
beling unsegmented sequence data. We demonstrate that the latter
can be implemented with finite state transducers. We experiment
with phones and context dependent HMM states as acoustic model-
ing units. We also investigate the effect of context in acoustic input
by training unidirectional and bidirectional LSTM RNN models. We
show that a bidirectional LSTM RNN CTC model using phone units
can perform as well as an LSTM RNN model trained with CE using
HMM state alignments. Finally, we also show the effect of sequence
discriminative training on these models and show the first results for
sMBR training of CTC models.

Index Terms— LSTM, CTC, RNN, acoustic modeling.

1. INTRODUCTION

Acoustic modeling with DNNs and RNNs has commonly used the
hybrid approach [1], where the neural networks as discriminative
models estimate the posterior probabilities of phonetic states — most
commonly hidden Markov model (HMM) states. The models are
generally first trained using fixed alignments as targets (acoustic
frames with the corresponding HMM state labels). These align-
ments are often obtained from the forced-alignment of the super-
vised transcript with the acoustic frames using a GMM (Gaussian
mixture model)-HMM and can be further refined by realigning with
a fully trained neural network and then by retraining the network
with the new target alignments. The cross-entropy frame-level loss
function is commonly used with a softmax output layer for the la-
beling of acoustic frames. For speech decoding, the phonetic state
posteriors for each acoustic frame are scaled with the state priors
to obtain acoustic likelihood scores which are combined with the
language model probabilities for phonetic state sequences. LSTM
RNNs with the hybrid approach have been recently shown to out-
perform the state of the art DNNs for acoustic modeling in large
vocabulary speech recognition [2, 3, 4, 5].

In this paper, we explore alternative acoustic modeling tech-
niques using LSTM RNNs for large vocabulary speech recognition
(described in Section 2). We compare the conventional approach of
cross-entropy (CE) training using fixed forced-alignments, with the
Connectionist Temporal Classification (CTC) approach [6] which
has previously obtained the state of the art results for phoneme
recognition on the TIMIT task with deep bidirectional LSTM
RNNs [7]. We show the CTC realignment procedure can be easily

implemented in finite-state transducer (FST) framework and explain
how CTC models can be used in decoding (Section 2.2). We also de-
scribe the use of sequence discriminative training with our sequence
models (Section 2.3). In Section 4, we describe experiments with
two acoustic modeling units – phones and HMM states. We also
investigate the effect of acoustic context for LSTM RNN acoustic
models by training unidirectional and bidirectional models.

2. ACOUSTIC MODELING WITH LSTM RNN

There are a number of alternative approaches for acoustic modeling
with neural networks for automatic speech recognition (ASR). Fun-
damentally the unit to be modeled by the network must be chosen
(e.g. phone, HMM state, context dependent HMM state, diphone,
word etc.). Training may use a hard (Viterbi) alignment with a sin-
gle class label per frame, or a soft (Baum-Welch) alignment giving
a probability distribution. Further, a variety of objective functions
such as frame discriminative CE or sequence discriminative training
criteria may be used. We examine all of these factors in the following
sections.

2.1. Cross Entropy Training with Fixed Alignments

Let x = x1, . . . , xT denote a sequence of T acoustic feature vectors
xt ∈ R for an utterance and w a word sequence. According to the
HMM assumption, the acoustic data likelihood is decomposed as
follows (using the Viterbi approximation):

p(x|w) =

T∏
t=1

p(xt|lt)p(lt|lt−1),

where l1, . . . , lT is the label sequence computed by forced align-
ment of the utterance with the word sequence w. In the hybrid
modeling approach, the emission probability is represented as
p(xt|lt) = p(lt|xt)p(xt)/p(lt). The label posterior can be modeled
by a DNN [8, 9, 10, 11, 12] over asymmetrically windowed acoustic
frames, a unidirectional LSTM RNN estimating p(lt|xt1) or a bidi-
rectional LSTM RNN estimating p(lt|x). The label prior p(lt) is
the relative label frequency as observed in the alignments. The data
likelihood p(xt) does not depend on labels and thus can be ignored
for decoding/lattice generation and forced alignment [1].

We assume that alignments are available (generated with an ex-
isting model such as GMM-HMM or neural network) and fixed.
Then, the neural network parameters can be estimated to maximize
the CE loss on all acoustic frames of input utterances x with a cor-
responding frame level alignment l (|x| = |l|).

LCE = −
∑
(x,l)

|x|∑
t=1

∑
l

δ(l, lt) log y
t
l . (1)
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where δ(l, lt) is the Kronecker delta and ytl is the network output
activations. The network output activations for each label and frame,
ytl as computed with a softmax output layer can estimate the label
posteriors p(l|x). The gradient of the loss function for each training
example L(x, l) with respect to input activations atl of the softmax
output layer can be computed as follows:

∂L(x, l)
∂atl

= ytl − δ(l, lt) (2)

Hence, with the CE criterion and softmax activation, the stochastic
gradient descent method optimizes the network parameters to make
the network predictions ytl match the target hard alignments δ(l, lt).

2.2. Learning Acoustic Frame Labeling with Connectionist
Temporal Classification

The connectionist temporal classification (CTC) [6] approach is a
learning technique for sequence labeling using RNNs where the
alignment between the inputs and target labels is unknown. CTC
can be implemented as a softmax output layer with an additional
unit for the blank label used to estimate the probability of outputting
no label at a given time. Therefore, the output label probabilities
from the network define a probability distribution over all possible
labelings of input sequences including the blank labels. The net-
work can be trained to optimize the total log probability of correct
labelings for training data as estimated using the network outputs
and forward-backward algorithm [13]. The correct labelings for an
input sequence are defined as the set of all possible labelings of the
input with the target labels in the correct sequence possibly with
repetitions and with blank labels permitted between separate labels.
Hence, CTC differs from the conventional framewise labeling in two
ways. First, the additionally introduced blank label relieves the net-
work from making label predictions at a frame when it is uncertain.
Second, the training criterion optimizes the log probability of state
sequences rather than the log likelihood of inputs.

The CTC loss function is defined as the sum of negative log
probability of correct labelings for each training example:

LCTC = −
∑
(x,l)

lnp(zl|x) = −
∑
(x,l)

L(x, zl) (3)

where x is the input sequence of acoustic frames, l is the input label
sequence (e.g. phonetic transcription for the utterance), zl is the lat-
tice encoding all possible alignments of x with l which allows label
repetitions possibly interleaved with blank labels. The probability
for correct labelings p(zl|x) can be computed using the forward and
backward variables estimated with the forward-backward algorithm:

p(zl|x) =
|zl|∑
u=1

αx,zl(t, u)βx,zl(t, u) (4)

where αx,zl(t, u) is the forward variable representing the summed
probability of all paths in the lattice zl starting in the initial state
at time 0 and ending in state u at time t, β(t, u) is the backward
variable representing the summed probability of all paths starting in
state u of the lattice at time t and going to a final state, and t can be
any time step. The gradient of the loss function with respect to input
activations atl of the softmax output layer for a training example can
be computed as follows:

∂L(x, zl)

∂atl
= ytl−

1

p(zl|x)
∑

u∈{u:zl
u=l}

αx,zl(t, u)βx,zl(t, u) (5)

where ytl is the network softmax output activation for a label l at
time step t, and u represents the lattice states aligned with label l at
time t. Contrasting the gradient of the CTC loss with the CE loss
of hard alignments, we can see that the CTC computes the CE loss
with a soft target alignment computed over a lattice of all possible
alignments with the forward-backward algorithm.

The gradients for the CTC output layer can be efficiently and
easily computed using finite state transducers (FSTs). In the forward
pass of the neural network training, we estimate the label posteriors
(including the blank) for each acoustic frame of an input utterance
using the softmax activations of the CTC output layer. In the back-
ward pass, we calculate the gradient of the loss function with respect
to input activations to the output layer by computing the forward and
backward variables using the shortest path algorithm on an FST rep-
resentation of all possible alignments for an input utterance. To build
the FST representation of possible alignments, we construct a trans-
ducer S encoding the label and its posterior as an arc for each time
step (hence the sum of the arc probabilities of a path gives the prob-
ability of a label sequence p(l|x)). Then, we compose this score
transducer S with a transducer encoding all valid label sequences L.
For CTC, L can be built by composing the string transducer for the
target phone sequence of an utterance with a simple transducer C
converting phone sequences to sequences of phones with repetitions
interleaved with optionally repeated blank labels (e.g. abc→ blank
blank a a b blank blank c c c blank).

For decoding with the CTC models using the standard beam
search algorithm, we build the search graph by simply composing
the language model G, the lexicon L and the CTC transducer C,
C ◦ L ◦ G. For decoding, the CTC C transducer is a single state
FST mapping labels to itself and blank to epsilon. Then, the decoder
can handle observing the same label multiple times without explicit
label repetitions in the search graph similar to handling HMM states.
The output label predictions from the CTC model is very spiky due
to blank label predicted for about 90% of frames. For this reason, in
contrast to conventional models, the phone label posteriors from the
CTC model do not require normalization with respect to language
model scores. In decoding, we only divide the blank label poste-
rior by a constant value (9) which adds a cost for not outputting any
labels, other label posteriors are directly used in decoding.

2.3. Sequence Discriminative Training

Cross-entropy as a framewise discriminative training criterion is sub-
optimal for word error rate (WER) minimization objective in ASR,
since it does not consider the lexical and language model constraints
used in speech decoding. A number of sequence-level discrimina-
tive training criteria have been proposed in the literature to address
this, including maximum mutual information (MMI) [14], minimum
phone error (MPE) [15]. Sequence discriminative training has been
shown to improve performance of DNN and LSTM RNN acoustic
models bootstrapped with cross-entropy training [16, 17, 18, 19, 4].

In this paper, we use state-level minimum Bayes risk (sMBR)
criterion [16] for sequence discriminative training of LSTM RNN
acoustic models first trained with CE or CTC loss functions. The
gradient of the sMBR criterion can be estimated from the state oc-
cupancy counts of the numerator lattice (generated by forced align-
ment with the transcript truth) and denominator lattice (generated by
decoding with a weak language model) for an utterance using the
forward-backward algorithm and can be efficiently computed using
the shortest path algorithm [20].
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3. LSTM RNN ARCHITECTURES & TRAINING

RNNs can be unidirectional or bidirectional models in terms of mod-
eling over the input context [21]. Unidirectional RNNs estimate the
label posteriors ytl = p(lt|xt,

−−→
ht−1) using only left context of the

current input xt by processing the input from left to right and having
a hidden state

−→
ht in the forward direction. This is desirable for appli-

cations requiring low latency. One common way to accomplish per-
formance improvement without degrading the latency much is giv-
ing the network limited access to the right/future context by having
delayed output targets in training. If one can afford the latency of
seeing all inputs, bidirectional RNNs can naturally estimate the la-
bel posteriors p(lt|xt,

−−→
ht−1,

←−−
ht+1) using separate layers for process-

ing the input in the forward and backward directions. We use deep
LSTM RNN architectures simply built by stacking multiple LSTM
layers, which have been shown to perform better than shallow mod-
els for speech recognition [22, 7, 2, 3]. For bidirectional models, we
use two LSTM layers at each depth — one operating in the forward
and another operating in the backward direction over the input se-
quence. Both of these layers are connected to both the forward and
backward layers above. The output layer is also connected to both of
the final forward and backward layers. The labels used for acoustic
frame labeling determine the acoustic modeling units used in speech
recognition. We experiment with context dependent HMM states
and phones for different acoustic modeling techniques and LSTM
RNN architectures. We train the models in a distributed manner us-
ing asynchronous stochastic gradient descent (ASGD) optimization
technique allowing parallelization of training over a large number
of machines on a cluster and enabling large scale training of neural
networks [23, 24, 18, 25, 3].

4. EXPERIMENTS

We evaluate the performance of various LSTM RNN acoustic mod-
els on a large vocabulary speech recognition task.

4.1. Systems & Evaluation

All the LSTM networks are trained on a 5 million utterance dataset
consisting of anonymized and hand-transcribed utterances. The in-
put to the LSTM RNNs is the 40-dimensional log mel filterbank en-
ergy features computed every 10ms, with no frame stacking. For
the LSTM models requiring an input alignment, the utterances are
aligned with an 85 million parameter DNN with 13522 CD HMM
states. The weights in all the networks are randomly initialized with
a uniform (-0.02, 0.02) distribution. We clip the activations of mem-
ory cells to range [-50, 50], and their gradients to [-1, 1] This makes
training with CTC models stable, without truncating the errors. The
trained models are evaluated in a large vocabulary speech recogni-
tion system on a test set of 22,500 hand-transcribed, anonymized
utterances. For all the decoding experiments, we use a wide beam to
avoid search errors. After a first pass of decoding using the LSTM
RNNs with a 5-gram language model heavily pruned to 23 million
n-grams, lattices are rescored using a 5-gram language model with
15 billion n-grams. We use an output delay of 5 frames for the unidi-
rectional models trained with the CE criterion using the fixed align-
ments. The delay is not needed for the CTC or bidirectional mod-
els. For bidirectional CTC models, we obtained the best results with
LSTM layers of depth 5 with forward and backward layers having
300 memory cells at each depth and for unidirectional CTC models,
with 4 LSTM layers of 500 memory cells. For the other models,

Alignment Label Context CE (%) +sMBR (%)
Fixed phone Uni 13.2 -
Fixed phone Bi 11.0 -
Fixed CD state Uni 10.0 8.9
Fixed CD state Bi 9.7 9.1
CTC phone Uni 10.5 9.4
CTC phone Bi 9.5 8.5

Table 1: LSTM RNN acoustic models.

we got the best results with 2 LSTM layers of 800 cells each with a
recurrent projection layer of 512 units.

4.2. Results & Conclusions

Table 1 shows the word error rates (WERs) of various LSTM RNN
acoustic models on the voice search task. Our best CE + sMBR
trained DNN model used to obtain initial alignments gives 10.1%
on this test set. The alignment Fixed refers to the models trained
with CE using the fixed alignments, while CTC refers to the CTC
models constantly realigning the data during training. The context
Uni refers to the unidirectional models, while Bi refers to the bidi-
rectional models. We report the WERs both after the CE training
and after the sMBR training which always starts after convergence
of CE training. The bidirectional CTC phone model performs better
than both phone and context dependent HMM state models trained
on fixed alignments. The unidirectional CTC phone model is signif-
icantly better than phone model trained on fixed alignments. How-
ever, it does not perform as good as the context dependent HMM
state model. The use of bidirectional context makes a significant
improvement for the CTC phone model, while it is much less sig-
nificant for the CE trained model using the context dependent HMM
states. Sequence discriminative training with sMBR criterion im-
proves all the models significantly, but it is unexpected that after se-
quence training the bidirectional LSTM with HMM states does not
perform better than the unidirectional LSTM even though the boot-
strapping bidirectional CE model has a better WER.

Figure 1 shows the plots of the label posteriors at each time
step estimated by various LSTM RNN acoustic models. We observe
that bidirectional models make better predictions thanks to use of
past and future context. CTC models make only a few spikes for
each phone while predicting blank label with high probability the
rest of the time. Sequence discriminative training seems to be gen-
erally increasing the uncertainty by distributing the probabilities to
other labels to fix the decoding errors due to disambiguation power
of the language model. We observed that training CTC models is
not very stable, especially for unidirectional models. The models
can sometimes converge to a suboptimal alignment. This is due to
the combinational effect of realignment during training and having
a model with a memory that enables to learn alignments not neces-
sarily corresponding to a true frame/label alignment. The model can
remember the acoustic states it has seen and choose to output the
short spikes at any time, without being constrained to output them in
synchrony with the corresponding acoustic features. We found boot-
strapping CTC models with CE trained models on fixed alignments
makes training stable and convergence faster.

Decoding with CTC phone acoustic models is significantly
faster than conventional context dependent HMM state models due
to spiky predictions of the model. Note that the search graph is also
smaller due to context independent acoustic units.
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(a) CE unidirectional LSTM with phone labels
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(b) CE bidirectional LSTM with phone labels
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(f) CE + sMBR bidirectional LSTM with HMM state labels

 0

 0.2

 0.4

 0.6

 0.8

 1

sil h aU k oU l d I z I t aU t s aI d sil

<b>
sil
h

aU
k

oU
l

d
I
z
t
s

aI

(g) CTC unidirectional LSTM with phone labels
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(h) CTC + sMBR unidirectional LSTM with phone labels
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(i) CTC bidirectional LSTM with phone labels (10% PER)
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(j) CTC + sMBR bidirectional LSTM with phone labels

Fig. 1: Label posteriors estimated by various LSTM RNN models plotted against fixed DNN frame level alignments on a heldout utterance
‘how cold is it outside’. We plot the posteriors for only the labels in the alignment. <b> refers to the blank label in CTC models.
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