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ABSTRACT

This article proposes and evaluates a Gaussian Mixture Model
(GMM) represented as the last layer of a Deep Neural Network
(DNN) architecture and jointly optimized with all previous layers
using Asynchronous Stochastic Gradient Descent (ASGD). The re-
sulting “Deep GMM” architecture was investigated with special at-
tention to the following issues: (1) The extent to which joint op-
timization improves over separate optimization of the DNN-based
feature extraction layers and the GMM layer; (2) The extent to which
depth (measured in number of layers, for a matched total number
of parameters) helps a deep generative model based on the GMM
layer, compared to a vanilla DNN model; (3) Head-to-head per-
formance of Deep GMM architectures vs. equivalent DNN archi-
tectures of comparable depth, using the same optimization criterion
(frame-level Cross Entropy (CE)) and optimization method (ASGD);
(4) Expanded possibilities for modeling offered by the Deep GMM
generative model. The proposed Deep GMMs were found to yield
Word Error Rates (WERs) competitive with state-of-the-art DNN
systems, at the cost of pre-training using standard DNNs to initial-
ize the Deep GMM feature extraction layers. An extension to Deep
Subspace GMMs is described, resulting in additional gains.

Index Terms— Deep neural networks, feature extraction, clas-
sification.

1. INTRODUCTION

The recent gains in the field of ASR obtained from the use of DNNs
rather than GMMs are typically attributed to the greater ability of
DNNs to extract useful discriminative features automatically [1] [2].
In particular, [1] carefully examines the GMM vs. DNN picture as
progressively more complex features are engineered into the GMM
architecture. Eventually, the GMM results improve quite a bit com-
pared to the no-engineering baseline, but still trail the DNN results.
There is some evidence [3] that higher DNN layers represent features
that are more invariant to speaker differences. These studies, among
others, suggest that the fundamental breakthrough with DNNs de-
rives from this superior feature extraction. However, there is no
need to limit “deep” feature extraction to DNN architectures. Pre-
vious work proposed the general concept of Discriminative Feature
Extraction (DFE), in which both the feature extraction and classifi-
cation modules are optimized jointly [4]. One can view the many
successful DNN results as special cases of DFE, with the final DNN
layer(s) being the classifier, and the preceding layers corresponding
to the feature extractor. From this perspective, there is no reason
to limit the classifier to be a DNN layer, itself closely related to a
single Gaussian model with a globally pooled covariance matrix [5]
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Fig. 1. The Gaussian Mixture Model (GMM) layer: n nodes with g
Gaussian components per node, and associated µ, Σ & ω parameters.

[6]. This last observation makes the link to more structured classi-
fiers based on generative models such as GMMs. Previous work [7]
[8] [9] explored this possibility by separately training DNNs to gen-
erate “bottleneck” features which are fed into independently trained
GMM systems. This offers the possibility of preserving familiar
GMM techniques for optimization (such as use of the Expectation-
Maximization (EM) algorithm) and adaptation, on top of the richer
“deep” features from the DNN. These hybrid approaches, however,
did not address the possibility of joint optimization of the DNN fea-
tures together with the GMM backend. That is exactly what the Deep
GMM proposed here aims to address. The benefits of previously in-
vestigated hybrid systems still apply, but are now amplified by a new
capacity for joint optimization.

We note that a related “Deep GMM” was proposed in [10] in
which successive layers of log-linear models are built on top of
GMM-derived posteriors; this work did not evaluate joint optimiza-
tion of the GMM parameters. Moreover [11] investigated the joint
training of the bottleneck features with a sequence training objec-
tive, while the GMM parameters are separately trained using the EM
algorithm. Finally, [12] proposed a deeply factored GMM, operating
on original input features and not involving DNNs.
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2. A GMM LAYER FOR DEEP LEARNING

The GMM layer, shown in Fig. 1, embeds a set of Gaussian Mixture
Models into a DNN. The layer is designed so that it can easily be im-
ported to any part of the deep structure. Throughout this paper, the
GMM layer is mainly used as the last layer. Each node in the Gaus-
sian Mixture sub-layer has g Gaussian components. The number of
GMM nodes in the layer is equal to the number of classes (or states).
For each state s, the corresponding node in the GMM layer outputs
the negative log likelihood−log(p(x|s)), p(x|s) being produced by
a mixture of Gaussians,

p(x|s) =

g∑
i=1

ωsiN (x, µsi,Σsi). (1)

Here µsi and Σsi represent the mean vector and covariance matrix of
the ith Gaussian within state s, and ωsi is the corresponding weight.

The GMM layer has four additional sub-layers. A linear bottle-
neck sub-layer of d nodes feeds its output to all nodes in the GMM
layer as the input feature x (of dimensionality d). The notation
GMM(d, g) is used for a GMM layer with given input dimensionality
and number of Gaussians per state. Three parameter sub-layers, the
µ-layer, Σ-layer, and ω-layer store real-valued parameters for each
node, representing the standard GMM parameters, or transformed
versions thereof. Each of these sub-layers has the same number of
nodes as the GMM layer, to which they are connected one-to-one.

The actual model parameters are derived by transforming the
stored values to respect the parameter constraints of a Gaussian Mix-
ture distribution, detailed below. To avoid confusion between actual
model parameters and stored values, the parameters in the trainable
layers are referred to as µ′, Σ′ and ω′. Each node stores a supervec-
tor corresponding to the model parameters. For a GMM(d, g) layer,
each node in the µ-layer stores the supervector µ′s = [µ′s1, ..., µ

′
sg],

where µ′si is the vector stored for component i of state s. Similarly,
Σ-layer and ω-layer store corresponding supervectors Σ′s and ω′s.
In the forward pass, these parameters are transformed to the corre-
sponding GMM parameters in the GMM layer. In the backward pass,
the corresponding gradients are fed back to update the parameters.

Forward Pass. In the forward pass, the GMM layer outputs the
negative log likelihood, L(x, s) = −log(p(x|s)), where p(x|s) is
the Gaussian Mixture distribution from Eq. (1), with parameters µ,
Σ, and ω. To ensure that the parameters of the GMM layer obey the
constraints of a Gaussian mixture, appropriate activation functions
are applied within the GMM layer for each state s and component i:

• µ-layer: There is no constraint on µ values, so µsi = µ′si.

• Σ-layer: The parameters stored in this layer, Σ′, correspond
to the diagonal components of the covariance matrix. To im-
pose the semi-positivity of these parameters, the exponential
activation function was used, i.e. Σsi = exp(Σ′si).

• ω-layer: To impose positivity and the sum-to-one property of
the mixing weights, this layer stores real values but applies a
softmax transform:

ωsi =
exp(ω′si)∑g
i=1 exp(ω′si)

.

The input to the GMM layer is first fed to the bottleneck sub-layer.
This layer is a linear layer which changes the dimensionality of in-
put features and reduces the correlation between features. The latter
is jointly enforced with the diagonal covariance matrix assumption.
The bottleneck layer outputs a d-dimensional vector which will be

Fig. 2. GMM optimization within overall NN structure.

fed to the GMM layer as input feature vector. The number of nodes
in this layer can significantly affect the overall performance.

Backward Propagation of Gradients. The partial derivatives
of each parameter back-propagated by the GMM to the rest of the
network are as follows. The index i corresponds to the GMM com-
ponent and index j denotes the dimension, so i = 1, ..., g and
j = 1, ..., d 1.

∂L(x, s)

∂µ′ij
= πi(x, s){

xj − µij

σij
2
}

∂L(x, s)

∂σ′ij
= πi(x, s){(

xj − µij

σij
)2 − 1}

∂L(x, s)

∂ω′i
= πi(x, s)− ωi

∂L(x, s)

∂x
= −

g∑
i=1

∂L(x, s)

∂µij
(2)

with
πi(x, s) =

ωiN (x, µij ,Σij)∑g
i=1 ωiN (x, µij ,Σij)

(3)

which is the contribution of each Gaussian distribution in the mix-
ture. Detailed derivation of the above equations can be found in
[13, 14, 15, 16, 17].

3. TRAINING A NEURAL NETWORK WITH GMM LAYER

Fig. 2 shows the structure of the embedded GMM within a Neural
Network (NN) architecture during optimization with Cross Entropy
(CE) [2]. There are three modules in this figure. The top module
estimates priors online during CE training. This is done by inputting
a constant value of 1 and the reference frame label into the softmax.
The logarithm of the estimated prior distribution, log(p(s)), is then
calculated.

The GMM layer is used as the last layer of the network. If the
GMM layer is used after the stack of hidden layers, the correspond-
ing structure is referred to as Deep GMM (DGMM), otherwise it will
be called Shallow GMM. The GMM layer outputs −log(p(x|s)) for

1The state dependency of variables is dropped to simplify the equations.
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each frame of the data. By subtracting this value from the logarithm
of the prior, the logarithm of the joint distribution can be formed:

log(p(x, s)) = log(p(s))− (−log(p(x|s))). (4)

The state posteriors for CE training can then be derived using

p(s|x) =
exp(log(p(x, s)))∑
s exp(log(p(x, s)))

. (5)

In this paper all experiments used CE training. However, the
proposed design allows the use of any optimization criterion, such as
Maximum Likelihood (ML), CE, or Discriminative Sequence Train-
ing [18] [19]. (Use of ML to optimize the entire structure requires
care, since the Jacobian of the bottleneck features has to be handled;
this is not detailed here).

The trainable sub-layers are initialized as follows. The µ-layer
values are initialized to random numbers derived from a normal dis-
tribution,N (0, 1). All parameters in the Σ-layer are initialized with
a constant value of 0 (corresponding to a transformed value of 1) and
the parameters in the ω-layer are initialized with a uniform value of
1/g. We considered the effect on training of each parameter sep-
arately. Our observation was that training all parameters jointly
achieves the best performance, but requires more overall training
steps than first training just the means and weights while fixing the
variances, before then training all parameters together.

4. EXPERIMENTS

The main concept behind the DGMM model is the joint optimiza-
tion of feature extraction and classification. Since GMMs primarily
function on the classification side, the “depth” of the model proposed
here primarily operates on the feature extraction side. These two are
then jointly optimized in the DGMM structure. The experiments are
designed to carefully examine the effect of each of these compo-
nents. DNNs can also be seen as joint models with both deep struc-
ture and a final classification layer. Both jointly optimized GMMs
and DNNs are compared in matched conditions for shallow and deep
structures. Further on, the Subspace GMM (SGMM) model is inves-
tigated using the GMM layer.

Datasets. The experiments described here used two anonymized
datasets: Icelandic (is-is), consisting of 60 hours of read speech,
simulating Voice Search queries, and American English (en-us),
consisting of 3000 hours of spontaneous speech from anonymized,
human-transcribed Voice Search data. The test sets for each lan-
guage are separate anonymized, human-transcribed Voice Search
datasets of about 25 hours each.

The training examples are log energy features obtained from the
concatenation of 26 frames, 20 left and 5 right. Frames consist of
40-dimensional log-energies extracted from a 25 ms window shifted
over the audio samples in 10 ms increments. Each training step has a
batch size of 200 examples. For both en-us and is-is, the DNN base-
line uses 8 hidden layers, each with 2560 nodes. The is-is system
uses 2432 context-dependent output states (resulting in about 55 M
parameters in total) while the en-us system uses 13568 output states
(for a total of about 85 M parameters). The DGMM model hidden
layers are initialized using the baseline DNN model, unless explic-
itly mentioned otherwise. The rectified linear units were used for the
hidden layers. ASGD training used 100 multi-core machines.

Effect of Joint Optimization. In this experiment we evaluated
three configurations on is-is. The first configuration is the baseline
DNN, trained to convergence. The second system is a DGMM with
a GMM(272,5) layer and 7 hidden layers. The hidden layers are ini-
tialized using the corresponding baseline DNN model and then kept

frozen during training. This simulates the separate optimization ap-
proach where feature extraction is done independently of classifica-
tion. The third system, the jointly optimized DGMM, uses the same
structure as the second one, with the difference that all the layers are
trained together. Both DGMM systems have about 49 M parameters
in all, but only 7.3 M of those are trained in the 2nd system. Table
1 summarizes the results of this experiment. The jointly optimized
DGMM clearly outperforms the separately optimized DGMM.

System baseline separately jointly
DNN optimized DGMM optimized DGMM

state acc 60.75 59.01 62.66
WER 15.6 14.6 12.2

Table 1. Separate versus joint optimization of model and features in
deep architectures (is-is).

The results for the two DGMM systems suggests that joint train-
ing successfully extracted features beneficial for GMM training.
However, a counter-argument is that the gain is due to the greater
number of trainable parameters in the jointly trained DGMM. To
address this possibility, we compared the two approaches using a
shallow structure. A GMM(39, 21) layer was used without any hid-
den layers. In the first experiment, we used PLP + LDA features
extracted outside the model as input to the GMM layer. In this case,
the GMM layer doesn’t have the bottleneck sub-layer. In the second
experiment, we used log energies as the input features and a bottle-
neck sub-layer of size 39 as feature extractor. Each system here has
about 4.0 M parameters in total. Table 2 shows the results, as well
as the number of training steps and CE cost at the time of of eval-
uation. The high WERs here suggest that optimization of shallow,
randomly initialized GMMs using ASGD is not very effective com-
pared to conventional GMM initialization techniques and ML-based
training using the EM algorithm. Nonetheless, the joint system out-
performs the separate system significantly, using a smaller number
of steps. This argues against the number of trainable parameters
having a dominant effect in the previous experiment, highlighting
instead the importance of joint optimization.

Front Topology CE cost num steps state acc WER
PLP+LDA 10.12 33.92 M 33.35 51.7
Log Energy 8.92 17.8 M 44.7 29.3

Table 2. Separate versus joint optimization of features and classifi-
cation for shallow GMMs (is-is).

Effect of DGMM depth. To examine the effect of depth more
carefully we conducted another experiment comparing DGMM
models with different numbers of hidden layers. Three structures
with 1, 3 and 7 hidden layers, and 2560 nodes per layer, were con-
sidered. The GMM layer, GMM(272,5), is used right after the last
hidden layer in each structure. Table 3 summarizes the results. Per-

# hidden #params CE cost #steps state WER
layers acc

1 10 M 10.02 19.74 M 47.43 32.4
5 36 M 8.00 2.75 M 59.44 14.8
7 49 M 7.62 1.4 M 62.66 12.2

Table 3. Effect of depth on DGMM performance (is-is).

formance significantly improves with depth, suggesting that the deep
structures possess superior feature extraction ability. In addition, the
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number of training steps significantly decreases as the structure be-
comes deeper. This supports the discussion in [20] on the learning
efficiency of deep structures over shallow ones. Note, however, that
the total number of parameters is not matched across configurations.

Feature Extraction vs Classification Power in NNs & GMMs.
In this section, the tradeoff between deep feature extraction capacity
and classification power is examined by comparing GMMs and NNs
with both shallow and deep architectures with matched total num-
bers of parameters. All four models have roughly the same number
of parameters, 54 M. The shallow NN has 3936 hidden nodes in a
single hidden layer while the deep NN is the baseline DNN described
earlier. The shallow GMM has a GMM(272, 41) layer without any
hidden layers beyond the 272-node linear bottleneck layer. For the
DGMM, we used 7 hidden layers of 2560 nodes with a GMM(480,
5) layer. All four models were trained starting from randomly ini-
tialized weights. Table 4 summarizes the results. For both GMMs

Shallow Deep
GMM NN GMM NN

state acc 30.66 53.38 55.67 54.06
WER 71 18.2 15.6 16.1

CE cost 10.21 1.33 7.33 1.18
#training steps 9.4 M 23 M 4.2 M 8 M

Table 4. NN and GMM results using shallow and deep structures,
with matched # of parameters, and no pre-training (is-is).

and NNs, the deep structure outperforms the corresponding shallow
structure in terms of number of training steps as well as state accu-
racy and WER. The shallow NN outperforms the shallow GMM by
a large margin. The performance difference between deep and shal-
low architectures is much larger for GMMs than for NNs. It might
be that optimized deep feature extraction is inherently more impor-
tant for GMMs than for NNs. However, as observed earlier, the high
WER for the shallow GMM suggests that optimizing shallow, ran-
domly initialized GMMs using ASGD is not very effective. In any
case, deep structure leads to much better optimization and/or fea-
ture extraction capability for the GMM system: the jointly optimized
DGMM outperforms the shallow GMM structure significantly. The
DGMM also outperforms the DNN.

Use of pre-training; large scale ASR results. Table 5 shows
results comparing DNNs and DGMMs with matched numbers of pa-
rameters for the large-scale en-us task, as well as for is-is, with some
use of pre-training. The DNN models have 8 hidden layers with
2560 nodes per layer; the is-is DNN was initialized cross-lingually
from an existing en-us DNN. The DGMMs share the input layer and
the first 7 hidden layers with their corresponding DNN model. A
GMM(480, 5) layer was used for is-is and a GMM(80, 15) layer
was used for en-us. The DGMM models are initialized from the
corresponding DNN models. The DGMM training results for en-us
are not fully converged. For both tasks, the proposed DGMMs yield
WERs competitive with state-of-the-art DNN systems.

Dataset is-is (60 hours) en-us (3,000 hours)
DGMM DNN DGMM DNN

state acc 61.69 60.75 57.4 59.2
WER 13.3 15.6 12.0 11.7

Table 5. Results for pre-trained DNNs and DGMMs.

Deep Subspace-GMM (DSGMM) The Subspace GMM
(SGMM) extends GMMs by introducing a shared subspace, vs,
among mixture components and two linear transforms M and W

Fig. 3. Integrating a Subspace Gaussian Mixture Model (SGMM)
into a DGMM architecture: the Deep SGMM (DSGMM).

which are tied among all mixtures [21]. For mixture s, the mean
parameters are µs = Mvs and the mixture weights are derived by
applying the softmax activation on Wvs. In [21], the variances are
not modeled with a subspace, due to a cited difficulty with training.

The SGMM model can easily be applied to the GMM layer, as
shown in Fig. 3. The shared subspace layer is a trainable layer that
stores a shared subspace, vs. There are three linear transforms, M ,
S, and W , corresponding to the three model parameters, means,
variances and mixing weights. These transforms are tied across
states. The subspace layer can be shared by one, two, or all three
sub-layers above. This is shown by dotted connections in the figure.
We examined three configurations in Table 6. All these DSGMM
models share the same deep structure of 7 hidden layers (baseline
DNN) and a GMM(80, 5) layer. The subspace dimensionality is the
same as that of the input feature, 80. The only difference is in the
way that models share the subspace layer. The parameters that do
not share the subspace have their own trainable layer instead. The
experiments show that the DSGMM model outperforms the base-
line DGMM model of similar size. The configuration that uses the
subspace only for the mean parameters slightly outperforms other
models in terms of state accuracy and WER. This required fewer
training steps than in the other configurations. Sharing the subspace
among all parameters also outperforms the baseline DGMM, but a
significantly larger number of training steps is required than for other
models. Sharing the subspace among just means and weights outper-
forms sharing the subspace among all parameters.

baseline shared shared shared
DGMM mean mean-weight all

state acc 60.63 62.38 61.8 61.13
WER 14.9 12.7 13.3 13.7

# training steps 2.1 M 0.3 M 1.8 M 4.2 M

Table 6. Deep Subspace GMM experiments (is-is).

5. CONCLUSIONS

This paper proposed a GMM layer as an alternative to the softmax
layer in a DNN structure. The resulting Deep GMM system com-
bines the advantages of deep feature extraction and GMM repre-
sentation. Joint training of this model with ASGD produced results
competitive with DNNs on two Voice Search tasks, particularly for
the smaller task. Extension of this model to Deep Subspace GMMs
resulted in additional improvements.
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