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ABSTRACT 

Glottal inverse filtering methods are designed to derive a 
glottal flow waveform from a speech signal. In this paper, 
we evaluate and compare such methods using a speech 
synthesizer that simulates voice production in a 
physiologically-based manner that includes complexities 
such as nonlinear source-tract coupling. Five inverse 
filtering techniques are evaluated on 90 synthesized speech 
waveforms generated by setting six vowel configurations, 
three glottal models, and five fundamental frequencies. 
Using normalized mean square error as the primary 
performance metric of the estimated glottal flow derivative, 
results show that the accuracy of all methods depends on the 
configuration of the vocal tract, glottis and the fundamental 
frequency. Averaged over these conditions, the closed phase 
covariance and one weighted covariance algorithm yield 
lower error rates (0.41 ± 0.2) than iterative and adaptive 
inverse filtering (0.49 ± 0.1) and complex cepstrum 
decomposition (0.76 ± 0.1).  
 
Index Terms—Glottal inverse filtering, glottal flow, glottal 
closure instant detection, speech signal processing, acoustics 

1. INTRODUCTION 

Glottal inverse filtering (GIF) is the process of deriving a 
glottal flow signal from acoustic and aerodynamic speech 
recordings [1]. This is a challenging task as it is essentially a 
blind source estimation problem where the input (voice 
source) and the system (vocal tract) are unknown. Although 
several promising GIF techniques have been proposed, there 
have been only a few reports on the comparative 
quantitative performance of these methods [2][3][4][5], in 
large part due to the challenging nature of the evaluation 
problem. The true glottal flow waveform (or its derivative) 
is rarely, if ever, measurable in practice [6], and thus 
quantifying the quality of a derived waveform is 
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problematic. Indirect measures have been used, for example, 
by using two-channel analysis [7][8], oral flow [9] or high-
speed videoendoscopy [10]. 

Historically, the main role of voice source–vocal tract 
decomposition has been in speech coding [11]; but recently, 
speech features obtained from the estimate of the glottal 
waveform have received attention more generally in the 
field. Voice source features have been used, for example, to 
improve speaker recognition [12][13] and voice 
transformation [14]. They have also been used to distinguish 
between major depressive disorders [15] and provide early 
diagnostic cues of Parkinson’s disease [16]. Obtaining the 
glottal flow is also of interest in the study of voice disorders, 
where parameters of the glottal flow—e.g., maximum flow 
declination rate, minimum flow, and peak-to-peak flow— 
have been shown to assist clinicians in characterizing voice 
quality and ultimately in classifying voice disorders [17]. 

Motivated by the increasing importance of glottal flow 
estimation, the current study uses a physiologically-based 
speech synthesizer termed VocalTractLab2 to evaluate five 
state-of-the-art GIF methods. The synthesizer produces a 
simulated glottal flow waveform and corresponding speech 
signal analogous to a microphone signal. The waveforms 
used in this study were formed using modal speech 
synthesis. The study of disordered speech remains the focus 
of future work. The GIF methods are then applied to the 
speech waveform and compared to the true glottal waveform 
using a normalized mean square error criterion.  

2. RELATION TO PRIOR WORK 

Previous studies that have used physiologically-based 
speech synthesis have focused on estimating parameters of 
the glottal flow signal [1], such as fundamental frequency 
[18] and formant frequencies [19]. Studies where glottal 
waveform estimation techniques have played a central role 
have typically not focused on the accuracy of the estimation 
technique, but rather assumed physiologically relevant 
features of the voice source [1][21][22]. Features include 
normalized amplitude quotient and closing quotient [22], the 
spectral difference between the first two harmonic 
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magnitudes (H1–H2), and the basic shape parameter of the 
Liljencrants-Fant voice source model [23].  

Although synthesized speech previously has been used to 
obtain a quantitative comparison of glottal flow estimation 
techniques [2][3], the simplicity of the synthesis models 
applied presents a dilemma. The synthesis models typically 
mirrored the glottal waveform estimation techniques used in 
the studies. It is therefore unknown whether the techniques 
are simply undoing the modeled synthesis process or 
undoing the natural phenomena of speech production. The 
evaluation method presented in this paper builds on past 
work [4] that compares the estimated GIF waveform using 
reference signals generated by a physiologically-based 
speech synthesizer. 

3. SYNTHESIS/ANALYSIS FRAMEWORK 

This section describes the synthesis methods for creating the 
evaluation data sets, analysis methods for glottal waveform 
estimation, and error criterion to evaluate performance. 

3.1. Synthesized data set 

The study used the VocalTractLab synthesizer that is based 
on a 3D articulatory model of the vocal tract [24][25]. The 
synthesis is “bottom-up:” the glottal area and associated 
aerodynamics are coupled to the articulatory model, thus 
enabling nonlinear voice source–vocal tract coupling effects 
in the model outputs. The vocal tract and side cavities are 
modeled using a transmission line, and three types of time-
domain glottal models can be selected for simulation. 

Figure 1 illustrates the vowel /a/ synthesized by 
VocalTractLab at a sampling rate of 20 kHz. The ripple 
component attributed to the nonlinear source-tract coupling 
is observed. The shape of the vocal tract can be modified to 
produce different vowel sounds, and the parameters of the 
glottal models can simulate varying voice qualities such as 
modal, soft, and breathy. The glottal models have a self-
oscillatory nature, and the nonlinear interaction between the 
vocal tract and glottis is naturally represented in the 
synthesis. 

VocalTractLab was used to create 90 utterances for all 
combinations of six vowels (/a/, /e/, /  / /i/, /o/, /u/), five 
fundamental frequencies (f0 = 90, 120, 150, 180, and 210 
Hz), and three glottal models (Two-Mass, Geometric, and 
Triangular). The Two-Mass Model is the classic model, 
where the vocal folds are represented by two mass-spring-
damper systems [26]. The Geometric Model is based on 
parameters that describe the shape of the glottis [27], which 
allows for the simulation of additional voice qualities; in 
this study, the Geometric Model was only set to modal 
(normal) voice quality. The Triangular Model is an 
extension of the two-mass model, where the masses are 
inclined as a function of the degree of abduction (hence 
triangular) to allow for the simulation of breathy and 
pressed voices [28]. In this study, the Triangular Model is 
only used in its normal mode. 

3.2. Glottal inverse filtering analysis methods 

Five state-of-the-art glottal waveform estimation techniques 
are compared in this paper: 

 

Figure 1. Exemplary waveforms from VocalTractLab generated 
for the vowel /a/ using the Geometric Model for the vocal folds 
[27]. 

1. Closed phase covariance analysis (CPCA) uses a hard 
weighting function where samples in the open phase are 
given zero value, and samples in the closed phase are 
assigned a value of one [see, e.g., [20]). The drawback of 
using this method is that the extent of the closed phase 
needs to be known through accurate identification of glottal 
closure instant (GCIs) and glottal opening instants (GOIs), 
which remains a challenging problem. 

2. Weighted covariance analysis 1 (WCA1) suppresses 
the speech samples around the GCI using an upside-down 
Gaussian centered on the GCIs [29]. The method does not 
need the GOIs to be identified. 

3. Weighted covariance analysis 2 (WCA2) also 
suppresses the contribution of the GCI but extends an 
attenuation region into the open phase. This suppresses the 
closing phase and the return phase around the GCI. The 
developers named this method, “weighted linear prediction 
with attenuated main excitation”, [19]. 

4. Iterative Adaptive Inverse Filtering (IAIF) computes 
all-pole parameters in a few steps, each time increasing the 
model order, to create a successively more accurate 
approximation to the vocal tract transfer function and avoids 
over-fitting. The models are thus constrained to approximate 
the vocal tract without modeling the voice source [30]. 

5. Complex Cepstrum Decomposition (CCD) achieves a 
separation of the vocal tract and the voice source signal in 
the complex cepstrum domain by assuming that the glottis 
contribution is anti-causal and is therefore represented as the 
negative part of the quefrency domain [31]. 

All the methods except IAIF rely on the identification of 
GCIs, with CPCA also requiring the identification of GOIs. 
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Yet another GCI algorithm (YAGA) [32] was used to 
identify GCIs, and GOIs were estimated by modifying 
YAGA to choose the candidate nearest to the midpoint 
between two consecutive GCIs. 

 
Figure 2. Illustration of glottal flow derivative estimates (black 
traces) plotted with the true glottal flow derivatives (gray traces) 
for the five GIF approaches under investigation. Normalized mean 
square error (NMSE) is reported for each estimate. 

 
The first three GIF methods assessed in this paper are 

based on a weighted covariance analysis of speech, which 
obtains the all-pole vocal tract parameters a as a 
solution to 

 
where the elements of the covariance matrix Φ  are 
obtained using 
 
 
and the elements of the auto-covariance sequence ξ  are 
obtained by 

 
 
Here, s(n) is the speech signal, N is the window size in 
samples, M is the number of all-pole parameters and l and k 
are integers from 1 to M. The weighting function w(n) is 
designed to emphasize important time samples in the signal. 

Figure 2 illustrates example analyses of a synthesized 
vowel waveform by the five GIF techniques implemented. 
The utterance is produced at f0 = 120 Hz, using the vowel /a/ 
and the Geometric model for the glottis. The true glottal 
waveform derivative and its estimates using each algorithm 
are shown. 

Table 1. Normalized mean square error (mean ± 1 standard 
deviation) for each of the five inverse filtering methods evaluated. 

CPCA WCA1 WCA2 IAIF CCD 
0.41 ± 0.23 0.45 ± 0.21 0.41 ± 0.14 0.49 ± 0.14 0.76 ± 0.13 

3.3. Evaluation error criterion 

Normalized mean square error (NMSE) was selected as an 
initial error criterion to provide a global metric of 
algorithmic performance. NMSE was defined as  

 
 

 
where u(t) and û(t) are the true and estimated glottal flow 
derivatives, and n is the time index over the stable portion of 
the vowel. The gain constant G was selected to produce the 
lowest NMSE. The estimated glottal flow derivative 
waveform was shifted by nd samples in time to compensate 
for the acoustic propagation time from the glottis to the 
position of the synthesized microphone waveform 
(nd = 14 samples for a 0.7-ms shift). 

4. RESULTS 

For the illustrative case of Figure 2, CPCA has the lowest 
NMSE value of 0.19. The estimated glottal flow derivative 
of CPCA gives a good fit to the opening phase, its ripple, 
and the return phase. The other methods also capture the 
ripple in the opening phase but do not follow the return 
phase as well. The CCD algorithm produces a high NMSE 
value of 0.75, explained both by consistent underestimation 
of the amplitude in the opening phase and a high-frequency 
artifact evident in the fourth glottal cycle. 

Figure 3 plots the NMSE as a function of fundamental 
frequency for each of the five GIF methods. A general trend 
of decreasing performance with higher fundamental 
frequency is observed. Obtaining GCI and GOI is more 
challenging at higher frequencies, which may explain the 
lower performance of the methods that rely on GCI and GOI 
estimation. These findings are consistent with those in the 
literature [1][19][32]. There is also a difference in 
performance between methods depending on which vowels 
are being modeled. The IAIF method, for example, performs 
better on the close and near-close vowels (/u/, /o/ and /i/) 
than on the open and near open vowels (/a/, /e/, /ε/). In 
contrast, CPCA performs better on the open vowels than the 
close ones. 

Figure 3 also shows the performance difference across 
analysis methods for three glottal models. The average 
NMSE over all analysis methods, vowels, and fundamental 
frequencies is 0.45 ± 0.14 for the Two-Mass Model, 
0.45 ± 0.18 for the Triangular Model, and 0.58 ± 0.241 for 
the Geometric Model. GIF of waveforms synthesized with 
the Geometric Model thus appears to be more challenging 
than analysis of the other glottal models. The relative 
performance was maintained when average NMSE was 
computed within each analysis method. 
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Figure 3. Normalized mean square error across five fundamental frequencies for particular synthesis configurations 
of six vowel types (rows) and three glottal models (columns). For each configuration, the error is plotted for the five 
GIF algorithms: CPCA, WCA1, WCA2, IAIF and CCD.  

Table 1 shows the overall error averaged across all 
synthesis conditions. NMSE varied significantly depending 
on vowel, glottal model, and fundamental frequency, with 
error lowest for CPCA and WCA2 and highest for CCD.  

5. CONCLUSION 

Five GIF methods were assessed using the physiologically-
based speech synthesizer VocalTractLab. The glottal flow 
derivative estimates were compared against the true glottal 
flow derivative waveforms produced by the synthesizer with 
NMSE as an initial error criterion. Voice samples were 
generated for six vowels, five fundamental frequencies, and 
three glottal models with results summarized in Fig. 3.  

Increasing fundamental frequency remains a challenge 
for all methods of GIF. Also, utterances produced by using 
the Geometric glottal model appeared to be more difficult to 
analyze than waveforms synthesized with the other glottal 

models. The CPCA algorithm performed well on open 
vowels, whereas the IAIF algorithm performed well on 
closed vowels. Results also showed that the performance of 
all GIF methods was dependent on how the utterance was 
generated with respect to vowel type, glottal model, and 
fundamental frequency. Overall, CPCA and WCA2 were 
shown to perform better with respect to NMSE than the 
other methods, although the varying degree of performance 
across synthesis configurations indicates that much more 
work is needed for robust GIF performance. 

Future research efforts warrant assessment using 
additional error criteria, such as standard parameters of the 
glottal flow waveform and its derivative (e.g., maximum 
flow declination rate and the coarse/fine structure of the 
waveform). The ability of different algorithms to estimate 
complementary aspects of the voice source (e.g., open phase 
versus closed phase properties), as well as non-modal glottal 
flow shapes, is also of interest. 
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