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ABSTRACT
Vocoders received renewed attention recently as basic components
in speech synthesis applications such as voice transformation, voice
conversion and statistical parametric speech synthesis. This pa-
per presents a new vocoder synthesizer, referred to as Vocaine,
that features a novel Amplitude Modulated-Frequency Modulated
(AM-FM) speech model, a new way to synthesize non-stationary
sinusoids using quadratic phase splines and a super fast cosine
generator. Extensive evaluations are made against several state-of-
the-art methods in Copy-Synthesis and Text-To-Speech synthesis
experiments. Vocaine matches or outperforms STRAIGHT in Copy-
Synthesis experiments and outperforms our baseline real-time opti-
mized Mixed-Excitation vocoder with the same computational cost.
We report that Vocaine considerably improves our statistical TTS
synthesizers and that our new statistical parametric synthesizer [1]
matched the quality of our mature production Unit-Selection system
with uncompressed waveforms.

Index Terms— vocoders, statistical parametric speech synthe-
sis, text-to-speech, non-stationary, AM-FM, fast cosine generators,
phase models, overlap-add, sinusoidal speech models

1. INTRODUCTION

A vocoder is a key component of modern speech synthesis applica-
tions because it provides a parameterization of the speech waveform
that is amenable to quantization, modification and statistical mod-
elling. The commercial interest for vocoders started with speech
coding, e.g. the Sinusoidal Transform Codec (STC) [2, 3] and Ad-
vanced MultiBand Excitation (AMBE) [4] but was later reduced for
about a decade following the dominance of CELP codecs. During
that period, many speech waveform models were proposed for use
in voice transformation and voice conversion, e.g. the Harmonic-
plus-Noise Model (HNM) [5], [6]. Similar notable work was made
by the audio processing community with the Sinusoids-plus-Noise
model [7] and IRCAM’s Super Vocoder Phase [8]. The quest to
realistically modify voice quality characteristics led to cumber-
some speech models that incorporate characteristics of the glottal
source [9] and its variants [10].

A renewed interest for vocoders came with the application of
Statistical Parametric Speech Synthesis (SPSS) [11]. Statistical
synthesizers require a parametric representation of speech that is
amenable to statistical modeling [12,13]. The two most notable con-
tributions here are STRAIGHT [14, 15] and AhoCoder [16] which
is an STC/HNM variant. Both vocoders are reported to be of similar
quality [16] but STRAIGHT is more widely used by the community
as a baseline. A perceptual evaluation between these as well as other
vocoders can be found at [17]; care however must be taken when
sinusoidal vocoders with measured phase are compared against
vocoders with artificial phase because the former correspond to
waveform approximating models that currently are not amenable to

statistical modelling. Statistical modelling of phases is possible [18]
and it is exciting to see whether it can further improve naturalness.
We will henceforth focus on those related to contemporary speech
synthesis.

STRAIGHT synthesis is too slow to be used in practice because
it relies on high-order FFT for high-resolution spectral synthesis. At-
tempts to make it faster may replace FFTs with an log-spectrum fil-
ter [19] or a variable lattice filter [20] and mixed-excitation [21].
Mixed-excitation is a pulse plus colored noise that sounds buzzy
sometimes. STRAIGHT reduces buzziness using an all-pass filter
to fuzzify the pulse in higher frequencies, an approach that works
well in many cases but alters voicing quality, reduces brightness and
does not produce realistic voiced fricatives; factors that influence
naturalness when Mean Opinion Score (MOS) is above 4.0.

Sinusoidal vocoders like STC, HNM and AhoCoder on the other
hand do not have an implicit way to deal with intra-harmonic noise
and forcefully split the speech spectrum in two parts: deterministic
and noise. HNM and AhoCoder have explicit noise models that use
modulation to incorporate noise into the signal, a trick that has also
being used successfully in [22], [9]. Band-splitting has the disad-
vantage that it is biased towards synthesizing noisy higher formants
that penalize brightness and that it is sensitive to voicing decisions,
frequently suffering from artifacts in unvoiced-voiced transients and
onsets.

Vocaine was designed to overcome shortcomings of STRAIGHT
and HNM with low computational complexity. It is a universal
vocoder synthesizer, a speech waveform renderer, that can be used to
synthesize speech from diverse parameterizations originating from
different analysis methods. Section 2 presents a novel speech model
that describes the speech signal in a single equation as a sum of non-
stationary sinusoids and incorporates a coherent noise-modulation
model for frication and breathiness. Section 3 presents a phase-
locked pitch-synchronous synthesis mechanism that allows explicit
phases to be set at glottal closure instants and successfully deals
with transients. Section 4 presents a novel phase interpolation tech-
nique that is referred to as quadratic phase splines that is very fast
and automatically introduces dithering noise at non-stationary parts
of speech. Section 5 presents a novel super-fast cosine generation
procedure that significantly lowers computational complexity. Sec-
tion 6 presents objective and subjective results in Copy-Synthesis
and SPSS.

2. VOCAINE SPEECH MODEL

Vocaine describes the speech signal s(n) as a sum of non-stationary
modulated sinusoids:

s(n) = A1(n) cos(φ1(n))

+

K∑
k=2

Ak(n) [γ0 − γ1αk(n) cos(φ1(n))] cos(φk(n)), (1)
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where K is the number of sinusoids, n = 1, 2, ..., Ts is the time
index in samples, Ts is the synthesis period, Ak(n), φk(n) and
αk(n) ∈ [0, 1] are the instantaneous amplitude, the instantaneous
phase and the instantaneous aperiodicity of k-th sinusoid, respec-
tively. γ0 is the modulation bias and γ1 is the modulation factor. The
term aperiodicity is borrowed from STRAIGHT and in this paper it
is used equivalently to the term non-deterministic. Let ωk(n) =
∂φk(n)
∂n

be the instantaneous frequency of the k-th sinusoid. The si-
nusoids are by construction harmonically related at the end-points of
the synthesis period: ωk(0) = kω1(0), ωk(Ts) = kω1(Ts).

Each sinusoid except the first one is modulated by the Coherent
Noise-Modulation (CNM) signal:

gk(n) = γ0 + γ1αk(n) cos(φ1(n)). (2)

Typical values used for γ0 and γ1 are 1.0 and 0.5, respectively. The
CNM signal modulates the k-th sinusoid according to instantaneous
aperiodicity αk(n) so that the modulated sinusoid exhibits a time-
domain structure that concentrates the energy around the maxima of
the first sinusoid cos(φ1(n)). When the sinusoid is deterministic
(αk(n) = 0.0) there is no modulation. When the sinusoid is purely
non-deterministic (αk(n) = 1.0) the modulation shapes the time-
domain envelope of the sinusoid according to aperiodicity. Thus, the
more aperiodic the sinusoid the stronger the time-shaping. In the
frequency domain, the modulation introduces images of the sinu-
soid at ωk(n) ± ω1(n) where ωi(n) = ∂φi(n)

∂n
is the instantaneous

frequency of the i-th sinusoid that is by construction linked to the
fundamental frequency.

Justification for the modulation signal arises from many direc-
tions. From a signal perspective, speech can be regarded as an AM-
FM (Amplitude Modulation / Frequency Modulation) process [23].
High-band speech exhibits a pitch-synchronous time envelope [24].
From a production perspective, the cyclic behaviour can be attributed
to the fact that the power of the vocal source is minimized during
the closed phase of the glottal cycle. Coupling between the glottal
source and the laryngeal cavity generates a laryngeal formant be-
tween 3 kHz and 7 kHz that also exhibits a cyclic behaviour [25].
From an auditory perspective, noise bursts are masked when syn-
chronized with pulses [26]. Finally, many papers report better syn-
thesis quality when they used modulated noise [6], [9], [22], [24],
[27], [28].

In Vocaine, the modulation signal improves significantly the
quality of voiced speech and, voiced fricatives in particular, re-
sulting to much higher MOS values for languages rich in voiced
fricatives like French. Vocaine uses the same signal model for
voiced and unvoiced speech; what differs is the randomicity of the
endpoint phases at n = 0 and n = Ts. Unvoiced speech is synthe-
sized with sinusoids with fundamental endpoint frequencies of 100
Hz and uniformly random endpoint phases. The endpoint phases
φk of voiced speech are randomized according to aperiodicity as
follows:

φ̂k = ψk + U
(
−h(αk)

π

4
,+h(αk)

π

4

)
, (3)

where ψk are the deterministic endpoint phases, αk is the endpoint
aperiodicity and U(a, b) ∈ [a, b] is the dispersion phase which is
a uniformly distributed random variable. h(·) : [0, 1] 7→ [0, 1] is
the aperiodicity conversion function that is used to compensate an
analysis bias that is usually found in aperiodicity estimations and a
synthesis bias that is related to the specifics of the wave generation.
A sigmoid function seems to work pretty well for STRAIGHT-based
aperiodicities. For the results presented in this paper we used ψk =
π/2.

3. PHASE-LOCKED PITCH-SYNCHRONOUS SYNTHESIS

Synthesis in Vocaine is made in chunks of audio that correspond
to a pitch-period in voiced speech and to 5 ms in unvoiced speech.
Every chunk of audio is contained between so-called Reference Syn-
thesis Instants (RSI) that define its endpoints. An RSI corresponds
to a glottal closure instant in voiced speech and to a regularly sam-
pled time-instant in unvoiced speech. The spectral parameters of the
Vocaine signal model are sampled at every RSI from the vocoder
parameters. Vocaine operates in a streamed manner, receiving pack-
ets of vocoder parameters at a fixed rate, i.e. every 5 ms, storing
them in a circular buffer and using as many as needed to synthesize
one chunk of audio at a request. Only the packages that contain the
endpoint RSIs of the audio chunk are used; the rest are discarded.

The RSIs are computed according to the fundamental pitch pe-
riod in voiced speech and to a fixed 10 ms period in unvoiced speech.
It is easier to demonstrate the process in the example of Figure 1:
The first RSI is taken at the beginning of the first packet. The second
RSI is taken T1 samples after the first one, where T1 is the pitch
period of the first packet. The second RSI is contained at the 4-th
packet which has a pitch period of T2 samples, and so on. When
Vocaine has synthesized until the third RSI, it has to wait for 4 more
packets to synthesize until the forth RSI.

Every audio chunk is synthesized in a way that ensures that the
phases at RSIs are exactly those described by equation (3). If the
fundamental period is not an integer then phase residuals must be
propagated during synthesis. This complicates the implementation
but is easily avoided by quantizing the fundamental frequency to
correspond to an integer fundamental period.

The pitch-synchronous synthesis is referred to as phase-locked
and Vocaine as phase-aware because the user can set desirable
phases at the RSIs. However, the synthesized signal cannot approxi-
mate the original because RSIs are set according to the fundamental
period. Desirable phases can originate from elaborated phase models
or even ones measured from the waveform.

Fig. 1. Synchronous to asynchronous operation.
Voicing transients, in particular unvoiced-to-voiced transients

and voiced onsets, are notoriously hard to synthesize without arti-
facts. Sinusoidal vocoders are also prone to introduce artifacts when
pitch is irregular because it is difficult to match sinusoids in that
case. Quatieri et al. resorts to a heuristic to match sinusoids [29].
Vocaine uses a hybrid strategy that switches between PSOLA (Pitch
Synchronous OverLap Add) [30] synthesis and sinusoidal synthe-
sis. When the period-to-period variation of pitch is relatively small
(below 25%) then the sinusoids at the two endpoints are matched
and sinusoidal synthesis is used for them. The rest of the sinusoids
are synthesized using PSOLA. When pitch variation is above 25%
then PSOLA is used for all sinusoids. PSOLA is also used for audio
chunks where one of the two endpoints is voiced and the other is
unvoiced. This seems to work quite well in all transients.

4. QUADRATIC PHASE SPLINES

This section describes how to synthesize a sinusoid between the two
endpoints of an audio chunk. Instantaneous amplitudes and phases
are linearly interpolated but phase interpolation is more complicated
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due to the circular behaviour of phases. Quatieri et al. suggested a
cubic phase model [3] that corresponds to parabolic instantaneous
frequency curve. A parabolic instantaneous frequency curve is com-
putationally expensive and occasionally introduces glitches at non-
stationary speech where the endpoint frequencies and phases do not
correspond to a smooth trajectory. Vocaine uses a novel quadratic
phase spline model, where the synthesis period [0, T ] is split into
two parts, [0, nc] and [nc, Tc] and each part is synthesized using
a quadratic phase curve. The instantaneous frequency ωk,c at the
break-point nc = bT/2c is allowed to vary in order to obtain a maxi-
mally smooth trajectory. Thus, the quadratic phase spline model cor-
responds to a piecewise-linear instantaneous frequency model with
the intermediate frequency being a degree of freedom that is used to
makes it maximally smooth.

Let φk,s(n) = θk,s + ωk,sn+ γk,sn
2, n ∈ [0, nc] be the start-

spline and φk,e(n) = αk,s+βk,e(n−nc)+γk,e(n−nc)2+2πM ,
n ∈ [nc, T ] be the end-spline. Phase is known up to an unknown
multiple of 2π due to its circular nature. The parameters of the
splines are computed by solving the equations using the following
continuity constraints for the splines:

φ̂k,s = φk,s(0), (start phase)

ω̂k,s =
∂φk,s(n)

∂n
|n=0, (start frequency)

φ̂k,e = φk,e(T ), (end phase)

ω̂k,e =
∂φk,e(n)

∂n
|n=T , (end frequency)

φk,s(nc) = φk,e(nc), (break-point phase continuity)

∂φk,s(n)

∂n
=
∂φk,e(n)

∂n
|n=nc , (break-point frequency continuity)

M is a phase-unwrapping integer that is chosen to produce a maxi-
mally smooth trajectory in the second derivative sense:

M̂ =

⌊
argmin

M

{∫ nc

0

∣∣∣∣∂2φk,s(t)

∂n2

∣∣∣∣2 dt+ ∫ T

nc

∣∣∣∣∂2φk,e(t)

∂n2

∣∣∣∣2 dt
}⌋

Remember that endpoint phases are randomized according to
aperiodicity in equation (3). The more aperiodic a sinusoid is, the
more random the endpoint phases are and the more noisy a sinusoid
should be. An easy trick to make a sinusoid track noisy is to add a
frequency dispersion term so that power spreads around the vicinity
of the sinusoid frequency. For example, an unvoiced sinusoid track
that starts from 100 Hz and ends at 100 Hz with random phases at the
endpoints would sound less periodic if the instantaneous frequency
at the middle of the track is, say, 140 Hz. In Vocaine, adding disper-
sion phase breaks the periodicity of the signal providing a richer
unvoiced sound. This is made because the breakpoint frequency
depends on the stationarity of the sinusoid. When the sinusoid is
fully stationary, the breakpoint frequency is exactly the middle of
the endpoint frequencies. When the sinusoid is non-stationary, the
breakpoint frequency deviates from the middle of the endpoint fre-
quencies. The details of the derivation of the spline parameters are
omitted due to space restrictions but are easy to derive.

5. UNSAFE SUPER-FAST COSINE GENERATION

Cosine generation constitutes a significant percentage of the com-
putational cost of a sinusoidal speech model like Vocaine and many
attempts have been made to reduce the increased complexity of co-
sine generators [31], [32], [33]. Synthesis of stationary sinusoids can

benefit from recursive formulas [31], [34] like the ones used in Go-
ertzel transform [35]. However, for Vocaine we are interested in ran-
dom access cosine generators where there is no exploitable structure
in the series of cosine computations. In [31], a set of codebooks, one
for each fundamental period were pre-computed and the codebook
with the fundamental period that is closest to the fundamental period
of the synthesized sinusoid was obtained using modulo addressing.
This method uses an excessive number of codebooks while modulo
addressing requires a modulo-division, which is a computationally
expensive operation even for modern processors. The large memory
requirements are likely to cause expensive cache misses in mobile
devices.

The obvious alternative is to use a simple codebook approxima-
tion which can be described by equation:

cos(ω) ≈ CN
[
b〈ω〉2π

N

2π
c
]
, (4)

where CN [n] = cos(2π n
N
) is a codebook with N entries, 〈·〉2π is

a modulo-2π operator, and b·c is the floor operator. The modulo-
2π operator can be implemented using the so-called additive range
reduction formula:

〈ω〉2π = ω − b ω
2π
c2π, (5)

which requires 2 multiplications, 2 conversions or 1 floor instruction
and 1 subtraction: a multiplication by 1

2π
, a conversion from float

to integer and back for the flooring operation, a multiplication by
2π and a subtraction. The overall computation requires 3 multipli-
cations, 3 conversions, 1 addition and 1 memory read. For the pur-
pose of waveform synthesis, this method can achieve a sufficiently
high SNR (Signal-to-Noise ratios) of ≈ 37 dB for codebook size
N = 256, but its accuracy might not be sufficient for other appli-
cations. Improved accuracy can be achieved at the cost of an extra
addition if we add 0.5 prior the floor operation.

This work proposes to further speed-up the codebook method by
forcing N = 2B (a B-bit codebook) and by sacrificing some of the
available input range. Instead of allowing ω to take any possible
value, we restrict it to be within an operational range so that:

cos(ω) ≈ CN
[〈
bω N

2π
c
〉
N

]
. (6)

Assuming 32-bit floating point arithmetic, the equation is equivalent
to the C++ instructions:

float cos(float omega) {
static float alpha = N / (2 * PI);
static int mask_N = (N - 1);
float omega_Nf = omega * alpha;
int omega_Ni = (int)omega_Nf;
return codebook[omega_Ni & mask_N];

}.

The multiplication converts the function from a modulo-2π circu-
lar function to a modulo-N circular function. The conversion to a
32-bit integer locates the principal value of the circular function to
the least significant B bits, while the most significant bits hold the
multiple of the period. For example, for ω = k2π + φ, the B least
significant bits hold φ, while the rest (most-significant) bits hold k.
The generator is called unsafe because this separation holds only if
we have no overflow during the conversion to integer. In the case of
overflow, the B least significant bits will contain information for φ
and k as well. Thus, for an 8-bit codebook, we can afford to have
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only 32-8=24 bits for k. In two’s complement integer arithmetic
- the standard nowadays - the modulo-N operation can be imple-
mented using a bitwise-AND instruction. Thus, the proposed unsafe
codebook-based generator requires only 1 multiplication, 1 conver-
sion, 1 bitwise-AND and 1 memory read. In many modern DSP pro-
cessors the last two instructions can be implemented with a single
circular addressing memory read. In this work we used a 512-size
codebook.

The complexity is further reduced by recasting phase maths in
a N -circular space and accordingly modifying all signal processing
of Vocaine. This saves the multiplication, so we end-up with a co-
sine generator that requires 2-3 instructions, less than half of the 7
instructions needed for the safe implementation. Furthermore, since
we operate in a modulo-N space, it is possible to use fixed-point
arithmetic throughout.

6. RESULTS
Vocaine is almost as fast as our current optimized embedded so-
lution, considering only synthesis speed. A comparison was made
against a MATLAB implementation of STRAIGHT and optimized
embedded production mixed-excitation implementations with LSP
(Line Spectrum Pairs) and MCEP (Mel-Cepstrum) parameteriza-
tions [21]. The computational cost of our floating point C++ Vo-
caine implementation for 22 kHz signals is only 8% higher than the
mixed-excitation LSP vocoder, 2% higher than the mixed-excitation
MCEP vocoder and remarkably faster than STRAIGHT (no fair
measurement can be made with a matlab implementation, though).
Please note the production mixed-excitation implementations are
faster than real-time in a diverse set of devices in the Android
ecosystem. Further optimization of our embedded statistical syn-
thesizers reduced the overall computational cost significantly below
our previous baseline.

We evaluated the quality of synthesized speech in Copy-
Synthesis experiments and in SPSS experiments. Copy-Synthesis
quality is an upper-bound of quality of SPSS. It is misleading to
evaluate vocoders solely on the output of a parametric synthesizer
because the statistical mapping can alleviate issues of the vocoder.
Further, the vocoder can be used to synthesize recorded segments
together with synthetic ones.

All subjective evaluations were made for naturalness Mean
Opinion Score (MOS) using a supervised high-quality crowd-
sourced system. Rating scale from 5 to 1 was the standard: ”excel-
lent”,”good”,”fair”,”poor”,”bad”. 100 utterances were presented to
hundreds of listeners. Every utterance was independently and ran-
domly assigned for rating to 8 different listeners. Table 1 presents
Copy-Synthesis results for two languages, English and French.
Only high-quality professional recordings related to Google Text-
To-Speech (TTS) products were used: 4 females and 1 male for
English and 1 female only for French. We can observe that Vo-
caine with Mixed-Excitation analysis is equivalent to STRAIGHT
and significantly better than the Mixed-Excitation vocoders with no
computational overhead. Vocaine with parameters from STRAIGHT
analysis (Vocaine+STRAIGHT) outperforms STRAIGHT but statis-
tical significance is being reached only for the French case. Thus,
STRAIGHT analysis is better than our Mixed-Excitation analy-
sis. Further, Vocaine+STRAIGHT MOS values are remarkably
high, 4.114 for English and 4.265 for French, and gets pretty close
to recorded speech. Vocaine works particularly well for French
because French is rich in voiced fricatives and our speaker has
a breathy voice character which is well represented by Vocaine’s
signal model.

Another listening test was made for naturalness MOS using
several TTS synthesizers. The experimental setting was the same

with the previous experiment, and we also included the same Copy-
Synthesis stimuli for reference and MOS scale calibration. For TTS
we used a female voice with a 30K corpus and we evaluated our
current production Unit-Selection synthesizer, an Mixed-Excitation
HMM-based synthesizer and two Vocaine-based synthesizers, one
that uses HMM and another that uses LSTM (Long-Short-Term-
Memory recurrent neural network) and is also presented in this
conference [1]. The results are shown in Table 2. The Vocaine-
based synthesizer outperforms the current HMM-based synthesizer
with statistical significance in a fair comparison. The comparison
between LSTM- , HMM- and unit-selection-based synthesizers syn-
thesizers is not fair because the LSTM one uses more text features.
However, the Vocaine+LSTM synthesizer matched the quality of
our production Unit-Selection TTS, which is a remarkable result
because it is the first time that we observe a statistical TTS compet-
ing with a mature unit-selection system with uncompressed speech.
We conducted an AB listening test for further investigation and the
result was that the two systems were almost equivalent. However,
another AB test revealed that the Vocaine+LSTM synthesizer is not
as good as our best Unit-Selection synthesizer. Both AB results are
not presented here due to space limitations.

Table 1. Copy-Synthesis Results: MOS + Confidence Interval
Stimuli MOS (US-EN) MOS (FR-FR)

Recorded wav 4.493± 0.101 4.568± 0.058
Vocaine+STRAIGHT analysis 4.144± 0.132 4.265± 0.073
Vocaine+MixedExc analysis 4.079± 0.116 4.031± 0.076

STRAIGHT anal./synth. 4.074± 0.126 4.016± 0.080
MixedExc - MCEP 3.877± 0.110 3.544± 0.092
MixedExc - LSP 3.699± 0.140 3.307± 0.106

Table 2. Text-To-Speech Results: MOS + Confidence Interval
Stimuli MOS (US-EN)

Recorded wav 4.529± 0.086
Vocaine+STRAIGHT analysis 4.337± 0.094
Vocaine+MixedExc analysis 4.176± 0.114

STRAIGHT analysis/synthesis 4.090± 0.111
Production Unit-Selection TTS 3.773± 0.128

Vocaine+LSTM TTS 3.738± 0.095
Vocaine+HMM TTS 3.472± 0.103

MixedExc+HMM TTS (MCEP) 3.314± 0.120

7. CONCLUSION

SPSS is particularly suitable for embedded speech synthesis and is
heavily based on vocoding which has to be fast enough for embedded
devices. Vocaine improves the quality of our embedded TTS with-
out a computational penalty and matches or outperforms the state-
of-the-art STRAIGHT that requires considerable computational re-
sources. Vocaine’s naturalness MOS in Copy-Synthesis experiments
ranges between 4.144 and 4.337 in various experiments. Besides
significant quality improvements over the baselines we report that
our Vocaine+LSTM statistical synthesizer has reached the quality of
our production unit-selection speech synthesis system with uncom-
pressed waveforms.
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