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ABSTRACT

Effective representation plays an important role in automatic
spoken language identification (LID). Recently, several rep-
resentations that employ a pre-trained deep neural network
(DNN) as the front-end feature extractor, have achieved state-
of-the-art performance. However the performance is still far
from satisfactory for dialect and short-duration utterance i-
dentification tasks, due to the deficiency of existing represen-
tations. To address this issue, this paper proposes the im-
proved representations to exploit the information extracted
from different layers of the DNN structure. This is concep-
tually motivated by regarding the DNN as a bridge between
low-level acoustic input and high-level phonetic output fea-
tures. Specifically, we employ deep bottleneck network (DB-
N), a DNN with an internal bottleneck layer acting as a feature
extractor. We extract representations from two layers of this
single network, i.e. DBN-TopLayer and DBN-MidLayer. E-
valuations on the NIST LRE2009 dataset, as well as the more
specific dialect recognition task, show that each representa-
tion can achieve an incremental performance gain. Further-
more, a simple fusion of the representations is shown to ex-
ceed current state-of-the-art performance.

Index Terms— Language Identification, Deep Neural
Network, Bottleneck Feature, Representation Learning

1. INTRODUCTION

Spoken language identification (LID) is the process of de-
termining the language identity of a given utterance. As a
branch of audio classification, LID approaches mainly con-
sist of two phases: (1) Front-end feature extraction, which
converts a given utterance into a discrete token sequence or a
set of continuous-valued feature vectors; (2) Back-end mod-
eling, which constructs the representations for LID.

In phonotactic approaches, such as Phone Recognizer
followed by Language Modeling (PRLM) and Phone Rec-
ognizer followed by Support Vector Machines (PR-SVMs),
the utterances are first tokenized into a sequence of phones
using a pre-trained phone recognizer (PR). The phonotactic
representations are then constructed using an n-gram model
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to capture the statistics of phonemic constraints and pattern-
s for each language. A similar concept can be found with
acoustic approaches, including Gaussian Mixture Model-
Universal Background Model (GMM-UBM) and Gaussian
Mixture Model-Support Vector Machine (GMM-SVM) meth-
ods, where the short-term spectral features such as MEL-
Frequency Cepstral Coefficients (MFCC) and Shifted Delta
Cepstrum (SDC) are extracted and modeled using GMM.

It can be seen that effective representation (i.e. feature
choice) plays an important role in LID. In recent years, be-
sides the acoustic and phonotactic ones, intensive efforts have
studied the effectiveness of representations from other do-
mains, including prosodic and articulatory parameters [1] [2],
universal attributes [3] [4], lexical knowledge and so on. Fur-
thermore, with the help of modern machine learning tech-
niques, such as discriminative training [5–7], Factor Anal-
ysis (FA) [8], [9] [10] and Total Variability (TV) modeling
[11, 12], the effectiveness of representations has been greatly
improved, especially for long-duration utterances.

However, performance is still far from satisfactory for
highly confusable dialects and short duration utterances. This
may be because language information is latent and largely
dependent on the statistical distribution of extracted features.
For short-duration utterances and for dialects, existing repre-
sentations are clearly insufficient. They are also susceptible
to variations introduced by different speech content, speakers,
channels and background-noise.

Deep learning based methods may be helpful to address
this issue. In [13], Ganapathy et.al proposed a CNN based
method directly trained on the LID dataset. In our previous
work [14], we showed that deep bottleneck features (DBF),
the output from a constricted internal layer of a structured
Deep Bottleneck Network (DBN), can effectively mine the
contextual information embedded in speech frames. By rep-
resenting each utterance as an i-vector, these LID systems
were shown to achieve excellent performance in the NIST
LRE2009 evaluation.

In the current paper, we extend our previous approach by
taking further advantage of the DBN structure. Our motiva-
tion is that, if the pre-trained DBN can be considered as a
bridge from low-level spectral or acoustic features to high-
level phonetic features, then the output from different DBN
layers may represent a graded mixture of acoustic and pho-
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netic information. Exploiting this may be advantageous for
LID.

Specifically, with a well-trained DBN structure as front-
end feature extractor (shown in Fig.1), we evaluate the ef-
fectiveness of representations from the internal bottleneck
layer (i.e. DBN-MidLayer) and the topmost layer(i.e.DBN-
TopLayer), for dialect and NIST LRE2009 tasks. The contri-
butions of this paper can be stated as follows:

• We propose a novel phonetic utterance representation
by averaging the outputs from the topmost layer of
the DBN. Like [15, 16], senone posteriors1 are used as
the frame-level features. However, we propose a new
Hellinger kernel-based similarity measure between
utterances, which we will show can achieve better
performance using the same phonetic representation.

• We propose to fuse this representation with our previ-
ous DBF-TV representation [14], and will demonstrate
that excellent performance can be achieved, especially
for dialects and short-duration test conditions.

In summary, the resulting system significantly outperforms
the current best-performing method (i.e. that introduced by
the authors in [14]) for both dialect recognition and short-
duration test conditions on NIST LRE2009.

In the following sections, we first briefly describe the pro-
cess of language identification using the representation based
on DNN in Section 2. We then detail the representations ex-
tracted from DNN in Section 3, which is followed by experi-
mental results and analysis in Section 4. Section 5 will con-
clude this work.

2. SYSTEM DESCRIPTION

As shown in Fig.1, the proposed LID system mainly consists
of three parts: 1) DBN structure, 2) Representation based on
DBN and 3) Similarity measure.
DBN structure. The DBN structure is the same as the one
in our previous work [14]. Different configurations of DBN
have been evaluated on the NIST LRE2009 dataset, including
dimensions of input and internal BN layer. With the optimal
configuration, the resulting LID systems can outperform the
original one in [14].

Given the Mandarin Corpus with phone-level labels, DB-
N training starts with an unsupervised pre-training process, in
which a generative deep belief network consisting of stacked
Restricted Boltzmann Machines (RBM) is obtained using the
method described in [17]. After that, a supervised fine-tuning
process is applied to optimize the DBN parameters by min-
imizing the cross-entropy objective function with a standard
error back-propagation (BP) algorithm.

1Senones are tied-states within context-dependent phones, which are gen-
erally used as the basic units for building word pronunciations in state-of-the-
art automatic speech recognition systems

Representation based on DBN. Given an utterance, two
types of representation can be extracted, i.e. the DBN-
TopLayer based on the output of the topmost layer of the
DBN, and the DBN-MidLayer based on the output of the in-
ternal BN layer; The DBN-TopLayer is constructed by aver-
aging the frame-level posteriors. Intuitively, DBN-MidLayer
can be processed in a similar way to the DBN-TopLayer.
However, we found in practice that the average of widely
different BN features doesn’t tell us much about the content
of the underlying utterance, leading to inferior LID perfor-
mance. Thus, the TV modeling technique is used instead in
this work to construct the DBN-MidLayer representation.
Similarity measure. With the DBN-TopLayer and DBN-
MidLayer representations, the distance measure should be de-
fined for them respectively. Intuitively, a Euclidean distance
can be used due to its simplicity and efficiency. However,
the DBN-TopLayer is actually a histogram vector that counts
DBN outputs. It is known that using Euclidean distance to
compare histograms often yields inferior performance com-
pared to using χ2 or Hellinger kernel. For DBN-MidLayer
representation, conventional cosine distance measure is used
as [12].

Given the similarity matrices calculated from DBN-
MidLayer and DBN-TopLayer, the SVM classifier can be
trained respectively. When given a test utterance, we apply
a simple score fusion scheme to make the final decision. We
will detail the representation and the corresponding similarity
measure in Section 3.

3. REPRESENTATION BASED ON DBN

As mentioned, the DBN structure is pre-trained on a Man-
darin Corpus with standard pre-training and fine-tuning pro-
cesses, which can be regarded conceptually as forming a
bridge between low-level acoustic input and high-level pho-
netic information. In this work, we evaluate the effectiveness
of two specific layers of the DBN, i.e. the topmost output
layer and the internal BN layer. We first introduce an optimal
DBN structure used to extract the frame-level features. Then,
the representations based on the outputs of the topmost layer
and internal BN layer of the DBN structure, namely DBN-
TopLayer and DBN-MidLayer are described respectively,
followed by discussion of the similarity metric.

3.1. Optimal configuration of DNN structure

The empirically derived optimal DBN structure has 1 input
layer, 5 hidden layers and 1 output layer, configured as n ×
43−2048−2048−43−2048−2048−6004. Each frame fea-
ture comprises 39-dimensional MFCC+4MFCC+44MFCC,
and 4-dimensional pitch features corresponding to the static
pitch, 1st and 2nd derivatives and voiced speech confidence
respectively. The DBN input feature is a concatenation of the
n frames centered around the current one. By heuristically
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Fig. 1. The LID system using representation based on structured DBN

setting n = 21, a 473-dimensional feature vector is obtained.
The DBN contains an internal bottleneck layer of 43 hidden
nodes, which is much smaller than other layers. This bot-
tleneck layer output forms a compact representation of the
input feature, which is considered to be more discriminative
and informative than conventional spectral features, i.e. S-
DC. Similarly to [15, 16], the topmost layer contains nodes
corresponding to senones. Conventionally, the senones are
automatically defined by a decision tree. For the Mandarin
corpus, 6004 senones are used.

3.2. Similarity measure for DBN-TopLayer

Let Q = qk, k = 1, . . . ,K be the set of senones. Given a
T frame speech utterance, U = ut, t = 1, . . . , T , the senone
posteriors p(qk|ut) can be predicted by feeding forward the
input feature vector ut through the DBN structure. As shown
in Fig.1, the DBN-TopLayer representation, [C1, . . . ,CK ]T ,
is the average of the senone posteriors predicted at a frame-
level. Each entry in C can be calculated as

Ck =
1

T

T∑
t=1

p(qk|ut) (1)

which is fixed-length feature vector that counts the frequency
of senones in the utterance.

Given two utterances Ci,Cj , the similarity measure
k(Ci,Cj) defined using a Hellinger kernel is

k(Ci,Cj) =
√

CT
i Cj =

√
Ci

T√
Cj (2)

We can see that calculation of the Hellinger kernel is equiva-
lent to a dot-product of the square-root of the DBN-TopLayer
features.

3.3. Similarity measure for DBN-MidLayer

We use the TV modeling technique to extract an i-vector as
the DBN-MidLayer representation. Given utterance U , the
GMM supervector M is created by stacking the mean vectors
of a GMM adapted to that utterance, modeled as follows

M = m+Tw (3)

where m is the UBM super-vector, T is a low rank rectangu-
lar matrix. w is the required low-dimensional i-vector with
normal distribution N (0, I). The training process of loading
matrix T is similar to the eigen-voice method [18].

After i-vector extraction, two intersession compensation
techniques are applied to remove the nuisance. The first is
linear discriminant analysis (LDA) which is a popular dimen-
sion reduction method in the machine learning community.
Generally, LDA is based on the discriminative criterion that
attempts to define new axes minimizing the within-class vari-
ance, while maximizing the between-class variance. The sec-
ond intersession compensation technique we used is within-
class covariance normalization (WCCN), which normalizes
the cosine kernel between utterances with an inverse of the
within-class covariance [11].

If B,A denote LDA and WCCN projection matrices re-
spectively, the resulting DBN-MidLayer representation be-
comes ŵ = BTATw. and the cosine distance measure be-
tween two utterances ŵi and ŵj can then be defined as

k(ŵi, ŵj) =
ŵT

i ŵj

‖ ŵi ‖‖ wj ‖
(4)

4. EXPERIMENTS

To evaluate the effectiveness of the proposed system, we
conducted extensive experiments. Firstly on 4 Arabic di-
alects (Iraqi, Levantine, MSA and Maghrebi) taken from
NIST LRE2011, and secondly on the NIST LRE2009 dataset
with 23 target languages (Amharic, Bosnian, Cantonese, Cre-
ole, Croatian, Dari, English-American, English-Indian, Farsi,
French, Georgian, Hausa, Hindi, Korean, Mandarin, Pash-
to, Portuguese, Russian, Spanish, Turkish, Ukrainian, Urdu
and Vietnamese). The training utterances for each language
mainly come from two different channels; the dataset of Con-
versational Telephone Speech (CTS) and the narrow band
Voice of America (VOA) radio broadcast dataset.

We have implemented six LID systems based on different
representations for evaluation, including phonotactic, acous-
tic and our proposed DBN-based ones, detailed as follows:
S1: the PR-SVM system using Russian PR provided by BUT
as a front-end feature extractor, with a bag-of-ngram utter-
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ance representation, and an SVM classifier trained using the
kernel proposed in [19].
S2: a similar PR-SVM system using a Mandarin PR, trained
using a front-end DBN feature extractor.
S3: the phonetic system implemented as described in [15,16].
P4: our first proposed system, using the average of senone
probabilities taken from the topmost layer of a DBN system,
followed by SVM with Hellinger kernel 3.
P5: a better tuned version of the DBN system using TV mod-
eling presented in [14]. In the current implementation, the
i-vector dimension is 600. The number of Gaussian compo-
nents is 512 for the dialect recognition task, and 2048 for the
NIST LRE2009 evaluations.
P6: a system which fuses the classification scores obtained
from systems P4 and P5.
As illustrated in [20] [21], we use average decision cost func-
tion (Cavg), and equal error rate (EER) as the performance
measurements. The use of these standard evaluation criteria,
dataset and evaluation task allow for direct comparison be-
tween systems.

4.1. Arabic Dialect Recognition Evaluation

To evaluate the performance of the given systems for dialect
recognition, we choose the Arabic task from NIST LRE2011.
Results are presented in Table 1, where we can see that the
phonetic representation using PR based on a DBN structure
outperforms the conventional PR with NN/HMM by about
2% − 4% (S2 vs. S1). The phonetic system using senone
posteriors [15] is better than conventional PR-SVM using a
bag-of-trigram representation (the previous best configuration
for PR-SVM) (S3 vs. S2). Compared to the senone poste-
riors [15], an additional absolute 1% performance improve-
ment is achieved by using the proposed DBN-toplayer repre-
sentation (P4 vs. S3). It can be seen that, for dialect recog-
nition, the DBN-midLayer representation is actually more ef-
fective than the phonetic system (P5 vs. P4). This is feasible
since the distinction between dialects may be smoothed or
degraded by the action of the PR. However, a PR with pow-
erful modeling capability may compensate for this disadvan-
tage. Using frame-level features instead of phones (S3, P4 vs.
S1, S2) provides another feasible solution. Furthermore, we
can see that the fusion of DBN-TopLayer and DBN-MidLayer
achieves the currently best achievable performance. This val-
idates the hypothesis that output from different layers of a
single DBN can improve LID performance, by incorporating
information from both acoustic and phonotactic representa-
tions. Further improvement may be expected by using DBN
structure trained with Arabic speech.

4.2. NIST LRE2009 evaluations

To evaluate the performance on a standard evaluation set, we
conducted experiments on the LRE2009 dataset. Results are
presented in Table 2, where the similar conclusion as dialects

Table 1. Evaluations on Arabic recognition in terms of EER
and Cavg (%)

System 30s 10s 3s
S1 7.93/7.69 17.27/16.95 30.13/29.57
S2 5.16/4.96 13.40/13.10 28.71/28.33
S3 4.13/4.06 12.48/12.24 26.19/25.98
P4 3.92/3.84 11.49/11.31 25.02/24.36
P5 2.70/2.56 7.63/7.17 19.47/19.03
P6 2.34/2.26 7.13/6.94 18.48/18.40

Table 2. Evaluations on NIST LRE2009 in terms of EER and
Cavg (%)

System 30s 10s 3s
S1 2.58/2.32 7.29/7.21 21.41/21.67
S2 2.08/3.03 6.79/6.84 20.93/21.56
S3 1.56/1.53 4.34/4.30 16.67/16.57
P4 1.54/1.52 3.78/3.78 14.28/14.23
P5 1.32/1.29 2.52/2.60 9.84/9.84
P6 1.20/1.16 2.40/2.38 8.95/8.91

DBF-TV [14] 1.98/1.97 3.47/3.45 9.71/9.74
SDC-TV [12] 2.40/ 4.80/ 14.20/

can be observed: Namely that the proposed phonetic system
using DBN-TopLayer representation (P4) significantly out-
performs conventional PR-SVMs (S1, S2) and the system us-
ing senone posteriors (S3). The tuned DBN-MidLayer (P5)
using the configuration as illustrated in Section 3 achieved
much better performance than either the previously reported
one [14] or the best reported results from NIST LRE 2009
[12] (both results are listed at the end of the table). Again, P6,
the fusion of both acoustic and phonetic systems, performs
best overall, by a significant margin.

5. CONCLUSION

This paper has built on the previous work of the authors
which demonstrated state-of-the-art performance on the NIST
LRE2009 LID task using features extracted from a deep bot-
tleneck network (DBN). Motivated by the observation that
the deep neural network acts as a bridge spanning between a
purely acoustic feature input and a purely phonotactic classi-
fication, this paper proposed using a fusion of representations
extracted from a single well-trained DBN. It is well known
that both acoustic and phonotactic features can be applied to
the LID task, and that each have their own strengths. There-
fore this paper proposed and explored fusing these strengths.
Results exhibit excellent performance for both dialect recog-
nition and LID, on NIST LRE tasks. In addition, this paper
proposed using a novel averaging method, with Hellinger
kernel based similarity measure, for the top level DBN poste-
riors, which was shown to perform well.
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