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ABSTRACT

State-of-the-art speaker recognition systems performance de-
grades considerably in noisy environments even though they
achieve very good results in clean conditions. In order to deal
with this strong limitation, we aim in this work to remove the
noisy part of an i-vector directly in the i-vector space. Our ap-
proach offers the advantage to operate only at the i-vector ex-
traction level, letting the other steps of the system unchanged.
A maximum a posteriori (MAP) procedure is applied in or-
der to obtain clean version of the noisy i-vectors taking ad-
vantage of prior knowledge about clean i-vectors distribution.
To perform this MAP estimation, Gaussian assumptions over
clean and noise i-vectors distributions are made. Operating
on NIST 2008 data, we show a relative improvement up to
60% compared with baseline system. Our approach also out-
performs the “multi-style“ backend training technique. The
efficiency of the proposed method is obtained at the price of
relative high computational cost. We present at the end some
ideas to improve this aspect.

Index Terms— speaker recognition, i-vectors, additive
noise

1. INTRODUCTION

Additive noise has always been one of the most important
problems in speaker recognition research and dealing with it
generally falls into one of four categories: speech enhance-
ment, feature compensation, robust modeling or score com-
pensation. We will not discuss here the latter as it is not deal-
ing directly with additive noise.

At a signal level, [1] proved that spectral and wavelet-
based speech enhancement techniques do not perform con-
sistently when used as a pre-processing block to a standard
speaker recognition system even if the resultant speech qual-
ity increases. It was further shown in [2] that these algorithms
might either enhance or degrade the recognition performance
depending on the noise type and the SNR level.

At a feature level, [3] carried out an extensive comparison
of several spectrum estimation methods and found that the
best estimator was related to the noise type and SNR level.
Recent work [4, 5], based on vector Taylor series (VTS) then
developed using ”unscented transforms” [6] tried to model

non-linear distortions in the cepstral domain based on a non-
linear noise model in order to relate clean and noisy cepstral
coefficients and help estimate a ”cleaned-up” version of i-
vectors. Despite its efficiency, this model remains very rigid
due to its complexity and not easily extensible. In such tech-
nique, adding a normalization step or changing the used pa-
rameters could mean to rewrite the whole technique.

On a model level, the parallel model combination (PMC)
was first introduced in speech recognition technology [7] be-
fore to be adapted to speaker recognition [8] by building a
noisy model and using it to decode noisy test segments. To
apply PMC inside modern speaker recognition i-vector sys-
tems is complex, as the noise has to be injected inside all the
different models: UBM, i-vector extractor and scoring mod-
els. In practice, the high computational expense, mainly in
the scoring model, of such a procedure makes it non realiz-
able. A robust backend training called ”multi-style” [9] was
proposed as a possible solution to account for the noise in the
scoring phase. This method uses a large set of clean and noisy
data (affected with different noises and SNR levels) to build
a generic scoring model. The obtained model gives good per-
formance in general but still is suboptimal (for a particular
noise) because of its generalization (the same system is used
for all noises). Another problem with this approach is that it
also assumes (theoretically) that test noise is (in some way)
present in the training data, which is not always true.

In this paper, we propose an i-vectors ”denoising” proce-
dure to deal with additive noise. The advantage of this ap-
proach is that we can use a regular clean backend since the
resultant i-vectors are assumed to be noise free. In order to
build this system, a number of assumptions are made over
the clean i-vectors and the noise distributions in the i-vector
space. We assume that both clean i-vectors and noise are nor-
mally distributed in the i-vector space. The first assumption
is justified by the factor analysis model used to extract the i-
vectors [10] which supposes a normal distribution for the re-
sulting i-vectors. Regarding the noise, a Gaussian distribution
modeling seems to be suitable. Even though, theoretically,
the noise is known to be non-additive in the i-vector space,
an additive noise model seems to give encouraging results.
It shows an improvement by up to 60% in the recognition
performance compared to the baseline system and by nearly
30% compared to the ”multi-style”. In addition, the approach
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is extensible to a mixture of Gaussians to model the noise i-
vectors. The originality of this technique is that it uses not
only information about the noise but also information about
clean i-vectors (the corresponding probability density func-
tions in the i-vector space). Hence, the risk of introducing
new distortions in the obtained i-vector is minimized.

2. I-VECTORS DENOISING

This section describes our new i-vectors ”cleaning” tech-
nique. De-noising the i-vector directly allows to use classical
state-of-the-art scoring models based on generative models
like two-cov [11], G-PLDA [12] or HT-PLDA [13] estimated
using clean data without any adaptation to the test noise.

Formally, given a noisy i-vector Y0, our goal is to estimate
the corresponding clean version X̂0. Let’s define two random
variables X and Y corresponding respectively to the clean
and noisy i-vectors. Let the noise random variable N be:

N = Y −X (1)

We consider that clean i-vectorsX are normally distributed as
described in [10], and assume that noise (N) can also be rep-
resented by a normal distribution in the i-vector space. We can
then define the corresponding probability distribution func-
tions f(X) and f(N) as :

f(X) = N (µX ,ΣX) (2) f(N) = N (µN ,ΣN ) (3)

whereN (µi,Σi) denotes a normal distribution with mean
µi and full covariance matrix Σi. Referring to (1),(2) and (3)
we can express f(Y0|X) for a given Y0 as:

f(Y0|X) =
1

(2π)
p
2 |ΣN |

1
2

exp−
1
2 (Y0−X−µN )tΣ−1

N (Y0−X−µN )

(4)
Based on the noise model (1) and the two previously defined
distributions, we can estimate for a given noisy i-vector Y0 its
clean version X̂0 using a MAP estimator :

X̂0 = argmax
X
{ln f(X/Y0)} (5)

Using the Bayesian rule, we can write :

X̂0 = argmax
X
{ln f(Y0/X)f(X)} (6)

Finding X̂0 becomes equivalent to solve:

∂

∂X
{ln f(Y0/X) + ln f(X)} = 0 (7)

By developing (7) using (2) and (4), we end up with:

∂

∂X
{(Y0 −X − µN )tΣ−1

N (Y0 −X − µN )}

+
∂

∂X
{(X − µX)tΣ−1

X (X − µX)} = 0

(8)

After the derivation, the final expression of the clean i-vector
X̂0 given the noisy version Y0 and bothX andN distributions
parameters is:

X̂0 = (Σ−1
N + Σ−1

X )−1(Σ−1
N (Y0 − µN ) + Σ−1

X µX) (9)

In i-vector-based speaker recognition systems [10], length-
normalization was proved to improve the overall performance
[14]. In our case, it is important to mention that all used noisy
and clean i-vectors were initially length-normalized.

3. EXPERIMENTAL PROTOCOL

Our experiments operate on 19 Mel-Frequency Cepstral Co-
efficients (plus energy) augmented with 19 first (∆) and 11
second (∆∆) derivatives. A mean and variance normalization
(MVN) technique is applied on the MFCC features estimated
using the speech portion of the audio file. The low-energy
frames (corresponding mainly to silence) are removed.
A gender-dependent 512 diagonal component UBM (male
model) and a total variability matrix of low rank 400 are esti-
mated using 15660 utterances corresponding to 1147 speakers
(using NIST SRE 2004, 2005, 2006 and Switchboard data).
The LIA SpkDet package of the LIA RAL/ALIZE toolkit
is used for the estimation of the total variability matrix and
the i-vectors extraction. The used algorithms are described
in [15]. Finally a two-covariance-based scoring [11] is ap-
plied. The equal-error rate (EER) over the NIST SRE 2008
male test data on the ”short2/short3” task under the ”det7”
conditions [16] (all trials involving only English language
telephone speech spoken by a native U.S. English speaker in
training and test). It will be used as a reference to monitor the
performance improvements compared to the baseline system
and to the ”multi-style” backend in noisy conditions.

We use 6 noise samples from the free sound repository
FreeSound.org [17] as background noises (crowd noise, air-
cooling noise, rain, cars traffic noise, nature noise and engine
noise). The open-source toolkit FaNT [18] was used to add
these noises to the full waveforms generating new noisy audio
files for each noise / SNR level.

4. ESTIMATION OF f(X) AND f(N)

The clean i-vectors distribution f(X) and the noise distribu-
tion f(N) are the two most important components in this de-
noising procedure. f(X) has the advantage of being noise-
independent, so it could be estimated once and for all over a
large set of clean i-vectors in an off-line step initially before
performing any compensation.

On the other hand, f(N) makes the system able to adapt
to the noise present in the signal and compensate its effect
more effectively. It is estimated for each different test noise
and it requires the existence of clean i-vectors and the noisy
versions corresponding to the same segments. First, for the

4191



clean part and once the train files are fixed, the corresponding
clean i-vectors (X) are extracted. Then, for a given noisy test
segment, the noise is extracted from the signal (using a VAD
and selecting the low-energy frames) then added to the clean
train audio files. Finally, the corresponding noisy i-vectors Y
are estimated and (1) is used to compute N and then f(N).

We focus in the following on minimizing the number of
train files used to build f(N) along with their selection cri-
teria. We will work with two different noises (crowd and
air-cooling) on three SNR levels (10dB, 5dB and 0dB) using
3000 clean train speech segments (SNR > 25dB).

4.1. Number of i-vectors needed to estimate f(N)

In a ”clean enrollment / noisy test” setup and for each one of
the previously described six configurations, the EER is eval-
uated using a different number of train i-vectors to estimate
f(N) going from 400 to 3000. (9) is used every time prior to
the scoring phase using the selected i-vectors to estimate µN
and ΣN . Figure 1 shows the obtained results:

Fig. 1. EER variation with the amount of i-vectors used to es-
timate the noise distribution f(N) for the ”air-cooling noise”
at 0dB, 5dB and 10dB (10 measures for each length).

It is clear that for the three SNR levels, the EER does not
vary much beyond 500. Then, we will fix to 500 i-vectors the
noise model training set size for our next experiments.

4.2. Train i-vectors selection

Once fixed to 500 the number of i-vectors needed to estimate
f(N), we concentrate on their selection criteria. For the six
different configurations, we created a set of 300 lists of 500
elements picked randomly from the original set of 3000 clean
audio files which will be used to estimate f(N). For each list,
we plot the resultant EER after compensation with respect to
the average files speech duration. Figure 2 shows the curve
obtained using noisy test data affected with crowd-noise on
10dB.

Fig. 2. EER variation with the average speech duration of the
segments used to estimate f(N) for the crowd-noise on 10dB.

It is easy to see that the longer speech segments give better
results than the short ones. We observed the same shape for
the other five configurations. In the following, the longest 500
files (having a speech duration of 90 seconds) will be used as
a train set to estimate f(N).

5. INTEGRATION OF THE DENOISING METHOD
IN A SPEAKER RECOGNITION SYSTEM

The new i-vector denoising method allows to build a speaker
recognition system that takes into account the test signal SNR
level as shown in Figure 3. As mentioned in the previous
section, the clean i-vectors distribution f(X) and the clean
train i-vectors (X) are extracted once and for all prior to
the denoising procedure. Before starting, an SNR threshold
above which a segment is considered clean has to be speci-
fied. Then, the algorithm follows these steps :

Fig. 3. Clean i-vector extraction algorithm.
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• SNR checking: The SNR level is estimated for the test
segment and compared to the threshold.

• The clean case: If the segment is clean, then a standard
i-vector extraction is done.

• The noisy case: If the segment is noisy :

1. The corresponding noisy i-vector Y0 is computed.
2. A VAD is used to extract the noise part from the

signal (by selecting the low-energy frames in the
signal corresponding to the non-speech intervals).

3. The noise is added to a set of clean train files with
the SNR of the test file (estimated in the first step).

4. A standard i-vector extraction is done using the
noisy train files (corresponding to the Y data).

5. The noise distribution f(N) in the i-vector space
is estimated using (1).

6. The new clean i-vector is estimated using (9).

6. RECOGNITION PERFORMANCE

In this section, the new estimated clean i-vectors (correspond-
ing to either test or enrollment segments) will be referred to
as ”I-MAP” vectors. The LIA speaker verification baseline
system reaches an EER=1.59% in clean conditions. We will
be comparing three performances in this section :

• Noisy i-vectors used with the baseline system (clean
backend).

• Noisy i-vectors used with a multi-style backend (the
scoring model is built using clean and noisy data af-
fected with different noises and SNR levels.

• I-MAP vectors used with a clean backend (the algo-
rithm described in Section 5 is used for each i-vector).

The enrollment and test data have been altered using two
different sets of noises (crowd noise, rain and engine noise)
for enrollment and (air-cooling, cars traffic and nature noise)
for test at five different SNR levels: 0dB, 5dB, 10dB, 15dB
and 20dB. Each utterance has been affected by one noise at
a fixed SNR level. Figure 4 shows the performances of the
three systems in matched/mismatched SNR scenarios. An av-
erage relative improvement of 43% is observed in all condi-
tions compared to the baseline performance and of 28% com-
pared to a ”multi-style” backend performance. The results
validate the method efficiency in matched and mismatched
SNR conditions while using different noises.

To prove the validity of our technique in a situation where
the noise level is varying randomly, we perform a last exper-
iment. In this experiment, all the speech files (for enrollment
and test) are corrupted by a noise with a varying SNR level
between 0dB to 20dB, the SNR level is selected randomly.
Table 1 shows the obtained results with the three systems.

The same range of improvement is also observed in this
condition. This result validates the use of the proposed algo-
rithm in unknown test/enrollment conditions.

Fig. 4. Each figure corresponds to a different enrollment
SNR. The x-axis corresponds to the SNR level in the test seg-
ments and the y-axis gives the resultant EER.

Table 1. Performance comparison in an heterogeneous setup.
EER (%)

Baseline 27.65
”multi-style” backend 23.12

I-MAP + clean backend 16.27

7. CONCLUSION

In this work, we introduced an i-vector cleaning technique
working only inside the i-vector domain. Our approach as-
sumes that both the clean i-vectors and the noise distributions
(in the i-vectors space) are normally distributed. It allows to
estimate the noise for a given test and to eliminate its influ-
ence inside the corresponding i-vector.

Significant improvement was observed using our ap-
proach compared to a baseline system or a ”multi-style”
backend system (60% to 43% of relative improvement). An
experiment using a randomly mixed setup, in terms of noise
level inside both train and test files, showed that our approach
still allows a large improvement compared to the two other
systems (16.27% of EER to be compared with 27.65% of
EER for the baseline system). These results demonstrate
clearly the potential of our approach.

Further improvements could be achieved to deal with the
computational cost of the proposed algorithm. One solution is
to build a noise distribution database in the i-vector space es-
timated using a large number of noise categories and different
SNR levels, then select the appropriate distribution depending
on the test i-vector. In terms of performance, it seems also in-
teresting to us to use a mixture of Gaussians in place of a
simple Gaussian to model the noise inside the i-vector space.
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