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ABSTRACT
An i-vector is a low-dimensional fixed-length representation of a
variable-length speech utterance, and is defined as the posterior
mean of a latent variable conditioned on the observed feature se-
quence of an utterance. The assumption is that the prior for the latent
variable is non-informative, since for homogeneous datasets there is
no gain in generality in using an informative prior. This work shows
that extracting i-vectors for a heterogeneous dataset, containing
speech samples recorded from multiple sources, using informative
priors instead is applicable, and leads to favorable results. Tests car-
ried out on the NIST 2008 and 2010 Speaker Recognition Evaluation
(SRE) dataset show that our proposed method beats three baselines:
For the short2-short3 core-task in SRE’08, for the female and male
cases, five and six respectively, out of eight common conditions
were beaten, and for the core-core task in SRE’10, for both genders,
five out of nine common conditions were beaten.

Index Terms— i-vector, informative prior, total variability,
source variation

1. INTRODUCTION

In the i-vector approach, variable-length speech utterances are
mapped into fixed-length low dimensional vectors that reside in
the so-called total variability space [1]. The i-vectors capture the
total variability, which is usually understood to include both speaker
and channel variability. The ease of dealing with i-vectors has re-
sulted in a myriad of techniques being proposed to maximize speaker
discrimination and reduce channel effects, which include amongst
others within-class covariance normalization (WCCN) [2], linear
discriminant analysis (LDA) [3], and probabilistic LDA (PLDA) [4].

When i-vectors are extracted from a heterogeneous dataset, as
encountered in the recent NIST SREs [5, 6], not only will they cap-
ture both speaker and channel variability, but also source variation. If
this source variation is not dealt with, it will adversely affect speaker
recognition performance [3, 7]. The notion of source variation was
introduced in the recent SREs and it is related to the speech ac-
quisition method (e.g., telephone versus microphone channel types)
and recording scenario (e.g., telephone conversation versus inter-
view styles). The various combinations of styles and channel types
(e.g., interview speech recorded over microphone channel) form rel-
atively homogeneous subsets of the dataset. In this work, the dataset
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consists of telephone, microphone (telephone conversation recorded
over microphone channel), and interview subsets, or sources.

Several proposals consider the issue of source variation within
the context of total variability modeling. In [8], the authors address
the issue of estimating the inter-speaker scatter matrix given a het-
erogeneous dataset where most speakers appear only once in any one
of the sources. The source variation will be strongly represented and
seen as part of the inter-speaker variability and will therefore be op-
timized in the resulting LDA transform. Another proposal involves
training of a supplementary matrix for the microphone subset on top
of an already trained total variability matrices on telephone data [3].
I-vectors are then extracted from a total variability matrix formed by
concatenating the two matrices. PLDA has also been used to further
project microphone and telephone factors to a common space [9].
Compensation using heavy-tailed PLDA has also been successful
[10]. Finally, a total variability matrix can be trained from a pooled
set of the training data. All these schemes require either training of
a supplementary matrix or retraining of the total variability matrix.

This work proposes to deal with the source variability by using
an informative prior at the i-vector extraction stage. The objective
is to use the same total variability matrix to describe the speaker
and channel variability across sources of data from a heterogeneous
dataset, with the source variation modeled at the priors. Re-training
of the total variability matrix is not required, neither in whole or in
part. Instead we assume a matrix already trained using abundantly
available data. We show how a source-specific prior can be used
in the i-vector extraction phase to compensate for unwanted source
variability. The extracted i-vectors, which now only capture speaker
and channel variability, can be processed at the LDA or PLDA stages
without needing to carry out any source variation suppression.

This paper is structured as follows: Section 2 reviews the i-
vector paradigm and the use of the non-informative prior. Section 3
gives the motivation for using an informative prior when a heteroge-
neous dataset is concerned. Section 4 presents theory for estimating
the source-specific priors and using them effectively in extracting i-
vectors. The following two section present the experiments that were
carried out and our results, and the final section concludes the paper.

2. THE I-VECTOR PARADIGM

The total variability model assumes that a speaker- and channel-
dependent GMM supervector m of an utterance [11] is modeled as

m = m0 + Tw (1)
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where m0 is the speaker-independent supervector obtained by con-
catenating the mean vectors from the UBM. The hidden variable w
weights the columns of the matrix T to explain the observed de-
viation from m0. The matrix T is defined to have low rank so as
to model the subspace where both the speaker and channel variabil-
ity (hence the name total variability matrix) correlate the most. The
training of the total variability matrix follows the same process as
that of training an eigenvoice matrix [12, 13]. The major difference
is that utterances from the same speakers are treated individually as
unrelated sessions [1].

Let {o1,o2, ...oT } represent the feature sequence of a given ut-
terance O. The feature vectors are assumed to be drawn from a
GMM with its mean supervector as in (1). For each mixture compo-
nent c of the GMM, the following Baum-Welch statistics are defined:

N(c) =
∑
t

γt(c) (2)

where t extends over all frames of an utterance and γt(c) is the oc-
cupancy of frame ot to the c-th Gaussian. We further denote the
centered first-order statistics as

F̃(c) =
∑
t

γt(c)(ot −m0(c)) (3)

Also, let N represent the diagonal matrix whose diagonal blocks are
N(c) × I and let F̃ represent the supervector obtained by concate-
nating the F̃(c), where c extends over all mixtures in both cases. In
order to extract an i-vector, given an already trained T, we compute
the posterior distribution over the latent variable w conditioned on
the observations. Assuming a standard normal prior w ∼ N (0, I),
the posterior distribution is also Gaussian [12], as follows

p(w|O) = N (L−1 ·TTΣ−1F̃, L−1) (4)

with mean vector

φ = L−1 ·TTΣ−1F̃ (5)

and precision L = (I + TTΣ−1NT). The i-vector is then given by
the mean vector φ of the posterior distribution [1]. Similar to that of
N, the matrix Σ in (4) is constructed by having its diagonal blocks
made up by the covariance matrices of the UBM.

The prior over the hidden variable w is usually taken to be a
standard normal distribution. While it is indeed possible to define
an informative prior, this prior can always be absorbed to the global
mean vector m0 and the loading matrix T [13, 14]. This step causes
the resulting prior to become non-informative, thereby requiring no
alteration to (4). As such, there is no compelling reason to use an
informative prior at least for the case when the dataset is homo-
geneous. In the following, we show how informative priors of the
form w ∼ N (µp,Σp), where µp 6= 0 and Σp 6= I, could be
modeled and used for i-vector extraction, and the benefit of doing
so when a heterogeneous dataset is concerned. In the NIST series
of speaker recognition evaluations (SREs), for instance, the dataset
contains “telephone”, “interview” or “microphone” speech sources
[5, 6].

3. INTRODUCING INFORMATIVE PRIORS

An informative prior encodes domain knowledge (i.e., the source
variation) by capturing underlying dependencies between the param-
eters [15]. In this section, we propose using minimum divergence

criterion for estimating source-specific priors from a heterogeneous
dataset. We then show how to incorporate the informative prior in
the i-vector extraction formula.

3.1. Minimum divergence estimation

Consider the case where individual speech sources (e.g., telephone,
microphone, or interview in NIST SRE) forms a relatively homo-
geneous subset and each speech source has I number of utterances.
For each utterance we compute the posterior distribution according
to (4) using the already trained T matrix. Given the set of posterior
distributions, we seek for a Gaussian distribution N (µp,Σp) that
best describes the I posterior distributions. This could be achieved
by minimizing the Kullback-Leibler (KL) divergence of the desired
distribution N (µp,Σp) from all the I posteriors N (φi,L

−1
i ). As

shown in [16], the closed form solution consists of the mean vector

µp =
1

I

I∑
i=1

φi (6)

and the covariance matrix

Σp =
1

I

I∑
i=1

(φi − µp)(φi − µp)T +
1

I

I∑
i=1

L−1
i (7)

Notice that the number of utterances I is generally different for each
speech source. The central idea here is to use a single T matrix
for all sources of data, where the variability due to the different
sources is modeled at the prior. Together, the combination of T and
the source-specific priors better models the variation across sources
from the heterogeneous dataset.

Notice that the mean µp of the informative prior is given by the
average of all the i-vectors belonging to a target set (recall that an
i-vector is given by the mean of the posterior distribution). The devi-
ation of the i-vectors from µp forms the empirical term in the covari-
ance Σp, while the second term accounts form posterior covariances
of the i-vectors.

3.2. Posterior inference with informative prior

We formulate the expression for the posterior distribution for the
general case when the informative prior as estimated above is used
in place of a non-informative one.

Proposition 1: Consider an informative prior p(w) ∼ N (µp,Σp)
with mean µp and the covariance matrix Σp. The posterior distri-
bution p(w|O) is Gaussian with mean

φ = L−1(TTΣ−1F̃ + Σp
−1µp) (8)

and precision

L = TTNΣ−1T + Σp
−1 (9)

Note that by setting µp = 0 and Σp = I, the posterior mean φ (i.e.,
the i-vector) and precision L reduce to the standard form of i-vector
extraction with a non-informative prior as in (4).

Proof. Assume that we have the parameter set (T,Σ), the hidden
variable w and the observation O. From Lemma 1 in [12] we know
that the log likelihood of O given w and the parameters (T,Σ) can
be expressed as the sum of two terms:
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logpT,Σ(O|w) = GT +HT,Σ (10)

where GT is defined by (3) in [12], and HT,Σ is defined as

HT,Σ = wTTTΣ−1F̃− 1

2
wTTTNΣ−1Tw (11)

Since GT does not depend on w, this term is not considered further.
Given the mean µp and covariance Σp

−1, we express the prior as:

p(w) ∝ exp(−1

2
(w − µp)TΣp

−1(w − µp)) (12)

The posterior distribution of w given O could be obtained by taking
the product of (11) and (12), as follows:

p(w|O) ∝ exp(wTTTΣ−1Ft− 1

2
wTTTNΣ−1Tw−

1

2
(w − µp)TΣp

−1(w − µp))

∝ exp(− 1

2
(w − φ)TL(w − φ))

(13)

with φ and L in the form as stated above.

4. PRIOR-COMPENSATED I-VECTOR EXTRACTION

In the Bayesian sense, an informative prior increases the prior be-
lief of the location and dispersion of each source in a heterogeneous
dataset. We note that a different spread is observed for each source
in the i-vector space, as was also reported in a previous study [7].
In the case of cross-source trials, the test i-vectors belonging to one
source and target i-vector belonging to another can no longer be as-
sumed to lie close to one another, even when representing the same
speaker. The implication of applying (8) directly would intensify the
difference across speech sources, resulting in poorer performance.

We propose to compensate for the differences across speech
sources (e.g., telephone versus microphone) by applying the prior
mean and covariance at separate stages in the i-vector extraction
phase. More specifically, we project the prior mean to the acoustic
space, while the covariance remains intact as part of the prior. The
operation of separating the prior mean and covariance is based on
the equality of marginalization which we shall now demonstrate.

Proposition 2: Let Π(c) be the marginal distribution for Gaus-
sian c obtained by modeling m = m0 + Tw with the prior w ∼
N (µp,Σp). For this source, the same marginalization Π(c) can
be realized by modeling m = m0 + Tw + Tµp with the prior
w ∼ N (0,Σp). This gives the following equality:

Π(c) =

∫
N (O|m0(c) + Tcw,Σ0)N (w|µp,Σp)dw

=

∫
N (O|m0(c) + Tcµp + Tcw,Σ0)N (w|0,Σp)dw

(14)
The proof of the proposition is given in the appendix.

Comparing the first and second rows of (14), the prior mean µp

is brought forward to the conditional density, which describes the
acoustic observation O. By doing so, the projection Tcµp of the
prior mean imposes a shift on the global mean vector m0(c). This
also gives rise to prior distributions with a common mode at the
origin (i.e., zero mean) but different dispersions Σp for individual

sources. Algorithmically, the projection Tcµp is applied on the ob-
servation by re-centering the first order statistics F̃(c), as follows

˜̃
F(c) =

∑
t

γt(c)(ot −m0(c)−Tcµp)

= F̃(c)−N(c)Tcµp

(15)

In a sense, the re-centering brings heterogeneous sources to a com-
mon mode at the origin of the total variability space and allows the
priors to differ only with regard to one anothers’ covariance.

The proposed prior-compensated i-vector extraction can be sum-
marized into the following steps:

1. Start out with an already trained T matrix. For each source,
extract an informative prior N (µp,Σp) using the minimum
divergence estimation as described in Section 3.1.

2. Re-center the first order statistics F̃ around the relevant
source-specific mean to give ˜̃

F, as in (15).

3. Extract i-vectors, by matching the now zero-mean informa-
tive priorN (0,Σp) for each source to the relevant re-centered
first-order statistics:

φ =L−1(TTΣ−1(F̃−NTµp))

=L−1(TTΣ−1 ˜̃F)
(16)

where the precision L is as given in (9).

5. EXPERIMENTS

5.1. Datasets and system setup

Our experiments were carried out on the short2-short3 core-task
of SRE’08 [5] and the core-core task of SRE’10 [6]. For all ex-
periments, a gender dependent setup was used. The features used
for training the 512-Gaussian UBMs were 57-dimensional MFCCs
(including the first and second derivatives). The first order statistics
used for training each total variability matrix were centered and
whitened [17]. For all experimental setups, a total variability matrix
was trained with non-informative priors being used in the E-step.

We compare four individual experimental setups in this work,
of which three are reference systems and one is the proposed sys-
tem. In the telephone only setup, a 600 dimensional T matrix was
trained using only the telephone data. In the pooled system, a 600
dimensional T matrix was trained using pooled telephone and mi-
crophone data. In the cascade system, a 400 dimensional T matrix
was trained using the telephone data, and a 200 dimensional T ma-
trix was trained using microphone data [3]. The telephone data used
to train these systems was taken from SRE’04, 05 and 06. The mi-
crophone data was taken from SRE’05, 06 and MIXER 5. The same
dataset was used to derive the informative priors.

In the 2-prior system, the already trained pooled T matrix was
used as the starting point. Using minimum divergence estimation
(Section 3.1), we trained one prior for the telephone subset and an-
other prior for microphone and interview subsets. We chose to use
only one prior for both microphone and interview since there was
not enough interview data to reliably estimate the interview prior. I-
vectors were extracted by performing re-centering of the first-order
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CC1: int-int CC2: int-int CC3: int-int CC4: int-tel CC5: tel-mic CC6: tel-tel CC7: tel-tel CC8: tel-tel
EER F M F M F M F M F M F M F M F M

Telephone only 3.51 2.84 1.50 0.32 3.61 2.97 5.69 4.07 6.65 4.17 5.85 4.67 2.73 2.32 3.24 1.43
Pooled 3.22 2.54 1.28 0.33 3.29 2.64 4.65 3.89 5.62 3.05 5.86 4.15 2.84 1.60 3.32 1.04

Cascade 3.17 3.01 1.25 0.41 3.26 3.22 5.38 4.27 6.10 4.12 5.86 4.06 2.98 1.66 3.81 1.32
2-prior 2.34 1.95 1.32 0.32 2.39 2.04 4.32 3.91 5.37 3.21 5.79 3.84 2.87 1.39 3.27 0.90

Table 1. SRE’08 Performance comparison for the sub-task short2-short3. Left: FEMALE Trials, Right: MALE Trials

CC1: int-int-
same-mic

CC2: int-int-
diff-mic

CC3: int-tel CC4: int-mic
CC5: nve-nve-
diff-tel

CC6: nve-hve-
diff-tel

CC7: nve-hve-
mic

CC8: nve-lve-
diff-tel

CC9: nve-lve-
mic

EER F M F M F M F M F M F M F M F M F M
Telephone only 3.06 2.02 5.65 3.45 4.21 3.55 3.96 2.72 3.59 3.47 8.09 4.64 8.49 4.91 2.01 1.14 2.46 1.54

Pooled 3.16 2.22 5.13 3.14 3.34 2.82 3.78 2.54 3.00 2.60 7.13 4.01 7.98 4.95 1.66 1.54 2.55 1.34
Cascade 3.12 2.29 5.60 3.29 4.01 2.62 4.04 2.87 3.41 3.13 7.10 4.33 8.19 5.25 1.83 1.68 3.08 1.61
2-prior 2.43 1.67 4.44 2.25 3.87 3.19 3.33 2.22 3.00 2.89 7.11 4.13 7.49 4.16 1.59 1.56 2.48 1.15

Table 2. SRE’10 Performance comparison for the sub-task core-core. Left: FEMALE Trials, Right: MALE Trials

statistics using the prior’s mean, followed by computation of the pos-
teriors using the prior’s informative covariance. LDA was used to
bring the dimension of the 600-dimensional i-vectors down to 400.
After carrying out length normalization, PLDA was used to model
the channel variability. For the PLDA model, a separate 200 dimen-
sional telephone matrix and 50 dimensional microphone matrix were
trained, in a decoupled manner, similar to the setup in [18].

5.2. Results

We present results for the four systems, for both male and female tri-
als. For all results, we used Equal Error Rate (EER). For the SRE’08
results, shown in Table 2 for both male and female trials, a substan-
tial improvement was seen in sub-tasks 1 and 3, corresponding to
the int-int condition. We could not beat the baseline for sub-task
2, which we believe is due to the smaller number of trials. For the
mixed trials, i.e. sub-tasks 4 and 5, source-specific informative pri-
ors showed improved robustness against both the telephone-only and
cascade cases. For the pooled case however, the results were a lot
closer and we did not beat this baseline in all cases. Interestingly,
our approach improved on several of the tel-tel only conditions, es-
pecially in the male case. From these results, it appears that source-
specific informative priors offer the greatest strength in enhancing
performance trials where the sources of the trail and target match.

We now discuss the SRE’10 results shown in Table 2. For the
single source interview and mic sub-tasks, as given by sub-tasks 1,
2, 7 and 9, we were able to beat all baselines in 3 out of 4 sub-tasks
in the female case and all cases in the male case. For telephone
only trials, given by sub-tasks 5, 6 and 8, in only one case could all
baselines be beaten. We believe the reason for the slightly worse
results for SRE’10 is the similarity of the data used to train the T
matrices and subspace PLDA models to that of SRE’08. For the
cross-channel conditions, we noted better performance for the int-
mic cross channel than for int-tel, strengthening our belief that best
performance is gained where source and target trials are better.

6. CONCLUSION

In this paper, we proposed a novel method of using a single T matrix
to better describe the source variation from a heterogeneous dataset.
The gist of our proposal is to compensate for source variation by
applying the prior mean and covariance at separate stages in the i-

vector extraction. We showed that by using an existing T matrix,
introducing informative priors for each source into the i-vector ex-
traction stage leads to performance gains in 5 out of 8 and 6 out
of 8 common conditions for the short2-short3 core-task in SRE’08
for the female and male case, respectively, and 5 out of 9 common
conditions for the core-core task in SRE’10, for both the female and
male case. The results show that source-specific informative priors
offer the greatest strength in enhancing performance trials where the
sources of the trail and target are similar, or match.

7. PROOF OF PROPOSITION 2

Proof. We first derive the probability distribution of p(m) where
m = m0 + Tw and w ∼ N (µp,Σp). The mean is computed as:

E[m] = m0 + Tµp (17)

and covariance as:

E[(m− E[m])2] =TE[wwT]TT −Tµpµp
TTT (18)

Realizing that the covariance of the prior distribution for P (w) is
simply Σp = E[(w − E[w]2)] = E[wwT]− µpµp

T, substituting
back into into (18) and simplifying, gives:

E[(m− E[m])2] =TΣpT
T (19)

Note that for the case of the non-informative prior, the mean and
covariance are reduced to m0 and TTT, respectively. In the same
vein, we compute the mean for the marginalization modeled by m =
m0 + Tw + Tµp and w ∼ N (0,Σp). We find the mean to be

E[m] = m0 + Tµp (20)
which is identical to the formally derived mean. The covariance is
computed as:

E[(m− E[m])2] =TE[wwT]TT (21)

Now the covariance Σp = E[(w − E[w])2] = E[wwT], which
when substituted back into (21), gives:

E[(m− E[m]2)] =TΣpT
T (22)

which is identical to the formally derived covariance. These will
contribute equally to the marginalization Π(c) given in (14). This
concludes the proof.

4188



8. REFERENCES

[1] Najim Dehak, Patrick Kenny, Réda Dehak, Pierre Dumouchel,
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