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ABSTRACT

Gaussian PLDA with uncertainty propagation is effective for i-
vector based speaker verification. The idea is to propagate the un-
certainty of i-vectors caused by the duration variability of utterances
to the PLDA model. However, a limitation of the method is the diffi-
culty of performing length normalization on the posterior covariance
matrix of an i-vector. This paper proposes a method to avoid per-
forming length normalization on i-vectors in Gaussian PLDA mod-
eling so that uncertainty propagation can be directly applied without
transforming the posterior covariance matrices of i-vectors. Instead
of performing length normalization on i-vectors independently, the
proposed method normalizes the column vectors of the total vari-
ability matrix. Because the i-vectors of all utterances are derived
from the same normalized total variability matrix, they will be sub-
ject to the same degree of normalization, thereby avoiding the un-
desirable distortion introduced by the utterance-dependent length-
normalization process. Experimental results on both NIST 2010
and 2012 SREs demonstrate that the proposed method achieves a
performance similar to (and in some situations better than) that of
Gaussian PLDA with length normalization. The method has the po-
tential of improving the performance of uncertainty propagation for
i-vector/PLDA speaker verification.

Index Terms— Total variability matrix, i-vectors, probabilistic
linear discriminant analysis, uncertainty propagation, speaker verifi-
cation.

1. INTRODUCTION

The I-vector/PLDA framework [1-4] is a state-of-the-art approach
to speaker verification. However, this framework ignores the fact
that i-vectors estimated from short utterances are less reliable than
the ones estimated from long utterances. As a result, all i-vectors
are considered equally reliable. When the utterance is short, the pos-
terior covariance of the corresponding i-vector will become large,
causing greater uncertainty in the estimated i-vector [5]. Kenny et
al. [5] proposed a method called uncertainty propagation that propa-
gates the uncertainty associated with the point estimate of an i-vector
to the PLDA generative model through the Cholesky decomposition
of the posterior covariance of the i-vector. This method can be per-
formed on both Gaussian PLDA and heavy-tailed PLDA, and studies
have shown that uncertainty propagation can substantially improve
the performance of PLDA models [S5, 6].

It was found in [4] that to use Gaussian PLDA for suppress-
ing session and channel variability, the i-vectors should be subject
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to length normalization. However, length normalization is a nonlin-
ear transformation, which causes difficulty for uncertainly propaga-
tion because it is not sure how to perform length normalization on
the posterior covariance matrix of an i-vector [S]. To overcome this
difficult, Kenny et al. [5] proposed two “unscented” transformation
methods as a means to perform length normalization on the posterior
covariance and Stafylakis et al. [6] avoid the normalization by forc-
ing the posterior covariance to be diagonal. However, the methods
are rather heuristic and the assumption of diagonal covariance may
be invalid.

This paper proposes a method to avoid performing length nor-
malization on i-vectors in Gaussian PLDA modeling without degrad-
ing performance. In other words, the method can achieve a similar
performance as if length normalization has been performed. Because
length normalization becomes unnecessary, how to perform length
normalization on the posterior covariance in uncertainty propagation
is not an issue anymore. Therefore, our method has the potential of
improving the performance of systems that make use of uncertainty
propagation.

Instead of performing length normalization on i-vectors inde-
pendently, our method normalizes the column vectors of the total
variability matrix T. This has the effect of reducing the range of
the variance in different dimensions of the subspaces defined by T.
The normalization can be done within each iteration of the EM al-
gorithm for estimating T'. Alternatively, it can be done after the EM
algorithm has completed. Unlike the conventional length normaliza-
tion, this method will not introduce utterance-dependent non-linear
distortion to the i-vectors. While there may be some distortion to
the total variability matrix, all i-vectors will be subject to the same
distortion because all of them are derived from the same T-matrix.

This paper is organized as follows. Section 2 reviews the i-vector
extraction process and introduces the idea of normalizing the total
variability matrix. Sections 3 and 4 outline the experiments that
enable us to study the property of the normalized total variability
matrix, and section 5 concludes our findings and highlights some
potential future work.

2. NORMALIZATION OF TOTAL VARIABILITY MATRIX

2.1. I-vector Extraction

The i-vector approach is based on the idea of joint factor analysis
(JFA) [1]. In [2], Dehak et al. notice that the channel factors in JFA
also contain speaker-dependent information. This finding motivates
them to model the total variability space (including channels and
speakers) instead of modeling the channel- and speaker-spaces sep-
arately. Given an utterance of speaker s, the speaker- and channel-
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dependent GMM-supervector [7] m is written as:
ms =m + Twg (1)

where m is the GMM-supervector of the universal background
model (UBM) [8] which is speaker- and channel-independent, T is
a low-rank total variability matrix, and the posterior mean of w; is
a low-dimension vector called i-vector.

Given an utterance with D-dimensional acoustic vector se-
quence X = {xi,...,xr} belonging to speaker s and an UBM
A® = {)\Eb), /J,Eb), E§b)}ﬁ1 with M mixture components, the
zero-order and centered first-order Baum-Welch statistics are com-
puted as follows [2,9,10]:

T T
N, = ZPr(i\xt) and F,; = ZPr(i|xt)(xt — /LZ(.w) (2)
t=1 t=1

where

AN (et 33)

Pr(i|x¢) =
S AON (i pl”, )

L i=1,..., M.

is the posterior probability of mixture components ¢ given x;. The
posterior covariance and posterior mean associated with an i-vector
are given by:

Cov(ws,ws) = Lt 3)
we =L ' TS R, )

where =
L=1+T'=® N,T Q)

is a precision matrix and I is the identity matrix. N is an M D x
M D diagonal matrix whose diagonal blocks are N, ;I. F, is an
MD x 1 supervector formed by concatenating the centered first-
order Baum-Welch statistics f‘sﬂ-. >® is a covariance matrix mod-
eling the residual variability not captured by the M D X R total vari-
ability matrix T'. In practice, we substitute this matrix by the covari-
ance matrices of the UBM, i.e., &%) = diag{Egb)7 ey 25\?}. The
posterior mean (Eq. 4) is the i-vector representing the speaker s.

The estimation of total variability matrix is almost identical to
that of the eigenvoice matrix in JFA [9,11]. It is trained by maximiz-
ing a likelihood objective function via the EM algorithm. Because
N, is a diagonal matrix, The maximum likelihood update formula
for T can be obtained from:

Ci = ZFS,iWsT7 (6)
A= YN (L wawT), 7)
T, = CA;" i=1,....M ®)

where T; is a D X R submatrix of T. In summary, the total vari-
ability matrix can be obtained by iteratively performing the E-step
(Eq. 4 and Eq. 5) and M-step (Eq. 6 — Eq. 8).

2.2. Normalization of Total Variability Matrix

A problem in factor analysis [12] is unidentifiability of the factor
loading matrix up to rotation and scaling [13-15], i.e., the factor
loading matrix and latent factors cannot be uniquely identified. Be-
cause the theory behind i-vectors is based on factor analysis, the
same problem will also occur in i-vector extraction. Let us use scal-
ing as an example. Denote an R x R arbitrary diagonal matrix ®

4181

with non-zero diagonal elements. Then we define:

T=T&"

ws = Pw,.

©

Substituting Eq. 9 into Eq. 1 and noting that & ~*&® = I, we obtain

ms =m + ’i‘v~v5
=m+Té& 'dw,
=m + Twy

10)

=ms

Eq. 10 shows that m will be equal to m for an arbitrary scaling
matrix ¥ as long as the matrix is diagonal and all of its elements are
non-zero. Hence, the solutions of T and w are non-unique.

To use Gaussian PLDA, length normalization should be per-
formed on i-vectors [4]. However length normalization is a non-
linear transformation, which causes difficulty for uncertainty prop-
agation because there is no straight forward way to perform length
normalization on the posterior covariance of i-vectors. Inspired by
the unidentifiability problem of factor analysis [13—15], we propose
to perform column normalization of the total variability matrix in-
stead of performing length normalization on i-vectors.

Denote T = [t1, ..., tr] where t, isan M D x 1 column vector.
The normalized total variability matrix is defined as:
t1 tR -1
T =|— . — | =T® 11
[Htlll ||tR||] o

where @ is an R X R diagonal matrix and its diagonal element ¢,
is the norm of the r-th column of T. This formula can be applied
after the whole EM algorithm has completed. Alternatively, it can
be applied after the completion of each M-step (Eq. 6 — Eq. 8). In
the sequel, we refer to this normalization process as T-matrix nor-
malization.

Once T',0rm has been obtained, it can be used for estimating
the i-vectors of any utterances. Specifically, given an utterance, its
i-vector can be obtained by Eq. 4 with T replaced by Ty,orm. The
property of T-matrix normalization will be discussed in Section 4.

3. EXPERIMENTAL SETUP

3.1. Speech Data and Acoustic Features

Experiments were performed on the male extended core set of NIST
2010 and male core set of NIST 2012 Speaker Recognition Evalua-
tions (SREs). For NIST 2010 SRE [16], interview and microphone
utterances of the extended core task were used, i.e., Common Con-
ditions 1, 2, and 4. In the sequel, we use “CC” to denote common
evaluation conditions. Male utterances from NIST 2005-2008 SREs
were used as development data (UBM, total variability matrix, and
PLDA). For NIST 2012 SRE [17], male phonecall utterances of the
core task were used, i.e., CC2. The speech files of male speakers in
NIST 2005-2010 SREs were used as development data for training
the UBM, total variability matrix, and PLDA models.

A Voice activity detector [18, 19] was used to detect the speech
regions of each utterance. 19 MFCCs together with energy plus their
1st- and 2nd-derivatives were extracted from the speech regions, fol-
lowed by cepstral mean normalization [20] and feature warping [21]
with a window size of 3 seconds. A 60-dim acoustic vector was
extracted every 10ms, using a Hamming window of 25ms.



3.2. Total Variability Modeling and PLDA

The i-vector systems are based on a gender-dependent UBM with
1024 mixtures. For NIST 2010 SRE, 4,073 microphone utterances
from NIST 2005-2008 SREs were used for training the microphone
UBM. 9,561 microphone utterances from NIST 2005-2008 SREs
were selected for estimating a microphone total variability matrix
with 400 total factors. The same data set was used for estimating the
Gaussian PLDA models.

For NIST 2012 SRE, 3,500 microphone utterances and 3,501
telephone utterances from NIST 2005-2008 SREs were used for
training a channel-independent UBM. We selected 14,875 telephone
and interview conversations from 575 speakers in NIST 2006-2010
SREs to estimate a total variability matrix with 400 total factors.
15,662 telephone and interview conversations from 673 speakers in
NIST 20062010 SREs were used for training Gaussian PLDA mod-
els with 150 latent variables.

We compared the performance of i-vectors extracted from the
ordinary total variability matrices with that from the normalized to-
tal variability matrices. For each case, we also investigate the per-
formance of systems with and without whitening (using within-class
covariance normalization [22]) and i-vector length normalization [4].

4. RESULTS AND DISCUSSIONS

4.1. Property of Normalized Total Variability Matrix

If T-matrix normalization (Eq. 11) is applied after the completion of
each M-step (Eq. 6 — Eq. 8), it may affect the estimated i-vectors in
the E-step, which may in turn affect the convergency of the EM al-
gorithm. It is of interest to investigate the effect of T-matrix normal-
ization on the convergency of the EM algorithm. To this end, 5,000
utterances from NIST 2006-2010 SREs were selected for training
two total variability matrices with 100 total factors: one without T-
matrix normalization and another one with T-matrix normalization.
The training of both matrices was started with the same initial ran-
dom matrix. Fig. 1 shows the log-likelihood (Proposition 2 of [11])
against the EM iteration numbers. Evidently, performing T-matrix
normalization within the EM iterations will not affect the conver-
gency of the EM algorithm.

As introduced in Section 2.1, the posterior covariance of i-vector
is the inverse of the precision matrix L. It is of interest to explore
the effect of T-matrix normalization on the numerical stability of the
posterior covariance. To this end, the same experimental setup as in
Fig. 1 was adopted. Fig. 2 shows the condition number’ of the preci-
sion matrix L against the EM iteration numbers. Evidently, with T-
matrix normalization, the condition numbers are much smaller than
those without T-matrix normalization. In addition, without T-matrix
normalization, the condition number of L starts to increase gradu-
ally after 6 iterations. On the other hand, with T-matrix normaliza-
tion, the condition number keeps on decreasing, suggesting that the
T-matrix normalization helps improve the numerical stability of the
posterior covariance matrices.

4.2. Performance Comparison

Table 1 and Table 2 show the performance of T-matrix normalization
in NIST 2010 and 2012 SREs, respectively. The results show that

'The condition number of a matrix can be used to measure the numerical
stability of matrix inversion. The smaller the condition number (the closer to
1), the better is the condition of the matrix [23].
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Fig. 1. Log-likelihood against the EM iteration number. See the
caption of Table 1 for the interpretations of the legend.
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Fig. 2. Condition number of precision matrix L, in Eq. 5 against the
EM iteration number. See the caption of Table 1 for the interpreta-
tions of the legend.

without T-matrix normalization (Sys. 1-4), i-vector length normal-
ization is very critical to the performance of i-vector/PLDA systems.
However, with T-matrix normalization (Sys. 5, 6, 9, and 10), i-vector
length normalization is not necessary and the performance is almost
identical to and sometimes better than the best performing baseline
(Sys. 4). As for the whitening of i-vectors (WCCN), its effect on
the i-vectors derived from the normalized T-matrix is inconclusive.
As shown in Sys. 6 and Sys. 10 of Table 1 and Table 2, WCCN
reduces the EER but it also increases the minimum DCF for some
conditions. In addition, results of Sys. 7, 8, 11, and 12 in Table 1
and Table 2 further show that i-vector length normalization is not
necessary whenever the total variability matrix has been normalized.
Comparisons among Sys. 5, 6, 9, and 10 in Table 1 and Table 2
reveal that it is better to apply T-matrix normalization after the EM
algorithm has completed. This is in fact an advantage of the pro-
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. L I-vector EER (%) MinNDCF(2010)
Sys. | T-matrix Normalization .

Preprocessing || CCl ‘ CcC2 ‘ CC4 || CC1 ‘ cC2 ‘ CC4
1 | None None 4.04 | 5.64 | 5.30 || 0.542 | 0.727 | 0.590
2 | None WCCN 1.97 | 3.23 | 3.66 || 0.364 | 0.534 | 0.519
3 | None LN 222 | 3.56 | 3.69 || 0.373 | 0.532 | 0.568
4 | None WCCN+LN 1.52 | 2.41 | 2.97 || 0.308 | 0.457 | 0.442
5 | Within EM None 1.59 | 2.61 | 3.10 || 0.255 | 0.433 | 0.445
6 | Within EM WCCN 1.41 | 243 | 3.27 || 0.354 | 0.515 | 0.522
7 | Within EM LN 2.83 | 4.01 | 3.92 || 0.402 | 0.562 | 0.574
8 | Within EM WCCN+LN 1.42 | 2.45 | 2.90 || 0.290 | 0.445 | 0.436
9 | After EM None 1.50 | 2.49 | 3.07 || 0.233 | 0.414 | 0.433
10 | After EM WCCN 1.37 | 2.34 | 3.23 || 0.353 | 0.521 | 0.520
11 | After EM LN 3.13 | 433 | 4.24 || 0.427 | 0.580 | 0.582
12 | After EM WCCN+LN 1.57 | 2.56 | 2.97 || 0.292 | 0.451 | 0.436

Table 1. The performance of i-vector/PLDA based speaker verification with and without normalization of total variability matrix for NIST
2010 SRE (male speakers) under the common conditions involving microphone recordings. “Sys.”: systems. “T-matrix”: total variability
matrix. “EM”: expectation maximization iteration. “T-matrix Normalization within EM”: applying the normalization of total variability
matrix after the completion of each M-step (Eq. 6 — Eq. 8). “T-matrix Normalization after EM”: applying the normalization of total variability
matrix after the whole EM algorithm has completed. The methods in i-vector preprocessing are named by the processes applied to the i-
vectors for computing the verification scores. For example, WCCN+LN means that whitening and length normalization were performed on

i-vectors before training the PLDA model.

posed method, because only a single normalization step is needed.

Fig. 3 shows the DET performance of systems with and with-
out T-matrix normalization. It also suggests that i-vector length nor-
malization is not necessary whenever the total variability matrix has
been normalized.

Sys. | T-matrix Normalization I-vector . EER (%) MinNDCF
Preprocessing (2012)
1 | None None 11.74 0.567
2 | None WCCN 4.17 0.472
3 | None LN 6.04 0.351
4 | None WCCN+LN 2.82 0.351
5 | Within EM None 3.67 0.286
6 | Within EM WCCN 3.35 0.287
7 | Within EM LN 4.75 0.464
8 | Within EM WCCN+LN 2.72 0.351
9 | After EM None 3.30 0.273
10 | After EM WCCN 3.25 0.272
11 | After EM LN 5.86 0.538
12 | After EM WCCN+LN 3.36 0.394

Table 2. The performance of i-vector/PLDA based speaker verifi-
cation with and without normalization of total variability matrix for
common condition 2 of NIST 2012 SRE (male speakers). The inter-
pretations of methods in the 2nd and 3rd columns are described in
the caption of Table 1.

5. CONCLUSIONS AND FUTURE WORK

Inspired by the unidentifiability problem of factor analysis, this pa-
per proposes performing normalization on the total variability ma-
trix instead of performing length normalization on i-vectors in i-
vector/PLDA speaker verification. Experimental results show that

Miss probability (in %)
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005 || == System 4 (1
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0'0:([).0]3.02 0.0501 02 05 1 2 5 10 20 40
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Fig. 3. The DET performance under CC2 in NIST 2010 SRE. See
Table 1 for the nomenclature of methods in the legend.

the proposed T-matrix normalization can achieve almost the same
performance as i-vector length normalization. The significance of
the results is that the method opens up opportunity to enhance the
performance of uncertainly propagation because the issue of apply-
ing length normalization on the posterior covariance of i-vectors can
now be resolved. The T-matrix normalization process imposes a
tight constraint on the total variability matrix (norms of all columns
equal to 1), whereas the conventional T-matrix estimation imposes
no constraint. For future work, it is of interest to investigate the ef-
fect of relaxing such constraint on system performance.
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