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ABSTRACT

We consider estimation of the angular velocity of a satellite
undergoing noisy process dynamics. Modelling the attitude as
a diffusion process evolving in SO(3), we propose an offline
nonparametric estimator of the angular velocity over an inter-
val based on noise free observations of the attitude. This is an
ill-posed problem, and Tikhonov regularization is employed
along with a Fourier-Galerkin method to solve the resulting
stochastic Euler equation. A geometry preserving numerical
scheme is proposed to simulate the attitude dynamics. Sim-
ulations are given which provide heuristics for choosing the
regularization parameter in different SNR scenarios.

Index Terms— Attitude estimation, Lie group integrator,
Tikhonov regularization.

1. INTRODUCTION

In this paper we consider the problem of estimating the angu-
lar velocity of a rigid body whose attitude evolves in SO(3).
Problems of this type arise for example in aerospace engineer-
ing [1], computer vision [12] and robotics [16].

Quaternion attitude representations are commonly used,
but these suffer from important difficulties [3]. Unfortunately,
those papers which employ an SO(3) attitude representation
tend to also use deterministic kinematics [4], [13], [17]. In-
deed there are very few papers which employ both stochastic
kinematics and an SO(3) attitude representation, and those
works don’t consider angular velocity estimation [11], [15].

Often, angular velocity is not explicitly estimated as filter-
ing approaches can be used to obtain attitude estimates from
noisy measurements directly [5]. But these approaches have
drawbacks. They employ quaternion attitude representations
and they do not guarantee that the manifold structure is pre-
served in the presence of stochastic kinematics. One must
consider continuous time kinematics and propose geometry
preserving stochastic integrators for discrete time implemen-
tation.

Some have considered angular velocity estimation di-
rectly. An online approach using star tracker measurements
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was introduced in [4] using an SO(3) representation and de-
terministic kinematics. In [17] the second author developed
an adaptive algorithm to estimate the attitude via the angu-
lar velocity, but the algorithm also employed deterministic
kinematics. Recently, optical flow methods have also found
application [6].

In this work, we use stochastic kinematics and model the
attitude as a stochastic diffusion process in SO(3). Given
noise free observations of the attitude over [0, T ], we aim
to estimate the angular velocity over the interval. This is an
ill-conditioned inverse problem, and so we apply Tikhonov
regularization. We solve the stochastic Euler equation nu-
merically using a classical Galerkin method. Such an ap-
proach should not be confused with the well known stochastic
Galerkin method [7].

Testing the proposed estimator requires one to simulate
the attitude diffusion numerically. In doing so it is vital that
each simulated trajectory lies in the manifold. In this respect,
the simulation problem is much harder than classical SDE
simulation [10]. This area is very much stll under develop-
ment, and we propose a novel scheme which can be inter-
preted in the framework of [14].

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the problem and establishes some notation.
In Section 3 the Tikhonov problem is formulated and the Eu-
ler equation is derived, while Section 4 contains the Galerkin
method for its practical solution. Geometric simulations of
the SDE are provided in Section 5.1, and the performance
of the Tikhonov-Galerkin estimator is studied in Section 5.2.
Conclusions are drawn in Section 6.

2. SYSTEM IDENTIFICATION IN SO(3)

Starting by injecting Brownian motion noise increments with
covariance σ2Idt into well known deterministic kinematics
Ṙ (t) = R (t)S (ω0 (t)), where ω0 (t) represents the angular
velocity in radians per second, one obtains the following Ito
equation for the attitude R (t) [2], [11].

dR (t) = −σ2R (t) dt+R (t)S (ω0 (t)) dt

+ σR (t)S (dB (t)) (1)
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where we have defined

S (a) :=

 0 −a3 a2
a3 0 −a1
−a2 a1 0


andB (t) = (B1 (t) , B2 (t) , B3 (t))

T is a standard Brownian
motion in R3.

The problem is to estimate the time varying parameter
ω0 (t) and the process noise parameter σ from observations
on [0, T ] given by y (t) = RT (t) y (0). The observation SDE
is therefore

dy (t) = −σ2y (t) dt+ S (y (t))ω0 (t) dt

+ σS (y (t)) dB (t) (2)

We concentrate on the estimation of ω0 (t) on [0, T ] since
σ2 has a simple expression in terms of quadratic variation
as follows. Using stochastic calculus, e.g. [9], and letting
[yi, yi]t denote the quadratic variation at t of the ith compo-
nent of y, we find

3∑
i=1

d [yi, yi]t = dyT (t) dy (t)

= −σ2dBT (t)S2 (y (t)) dB (t)

= σ2dBT (t) dB (t)− σ2
(
dBT (t) y (t)

)2
= 2σ2dt (3)

where we have used the identity S2 (y (t)) = y (t) yT (t)− I .
Integrating (3) from 0 to T one obtains

σ2 =
1

2T

3∑
i=1

[yi, yi]T (4)

which can be simply approximated pathwise.

3. TIKHONOV PENALIZED PROBLEM

In this section we formally propose a Tikhonov penalized
least squares problem to estimate ω0 (t) from observations
y (t) , t ∈ [0, T ], and derive the associated Euler equation.
In light of (4) we treat σ as known. The Tikhonov penalty is
necessary since ω0 is infinite dimensional, see e.g. [8] for an
introduction to inverse problems.

Throughout, let ‖·‖ denote the Euclidean norm in R3 and
〈·, ·〉 the associated inner product. We introduce the penalized
least squares functional1 based on (2), with derivative penalty
controlled by a parameter α > 0.

J (ω) =
1

T

∫ T

0

∥∥ẏ (t) + σ2y (t)− S (y (t))ω (t)
∥∥2 dt

+
α

T

∫ T

0

‖ω̇ (t)‖2 dt

1The paths of y are not differentiable, however this heuristic definition al-
lows us to derive an estimator from a weak formulation involving Itô integrals
only.

Expanding and dropping constant terms,

J (ω) =
1

T

∫ T

0

∥∥σ2y (t)− S (y (t))ω (t)
∥∥2 dt

+
2

T

∫ T

0

〈
dy (t) , σ2y (t)− S (y (t))ω (t)

〉
+
α

T

∫ T

0

‖ω̇ (t)‖2 dt

Now consider a perturbing function φ (t), and let ε > 0. Pro-
ceeding formally, at a minimizer ωα one has

d

dε
J (ωα + εφ)

∣∣∣
ε=0

= 0

Performing this computation gives∫ T

0

〈
σ2y (t) dt− S (y (t))ωα (t) dt+ dy (t) , S (y (t))φ (t)

〉
= α

∫ T

0

〈
ω̇α (t) , φ̇ (t)

〉
dt

Since the adjoint of S (y (t)) is −S (y (t)) in this setting, and
S (y (t)) y (t) = 0, we obtain∫ T

0

〈
S2 (y (t))ωα (t) dt− S (y (t)) dy (t) , φ (t)

〉
= α

∫ T

0

〈
ω̇α (t) , φ̇ (t)

〉
dt

Integrating by parts and assuming ω̇α (0) = ω̇α (T ) = 0,∫ T

0

〈
αω̈α (t) dt+ S2 (y (t))ωα (t) dt, φ (t)

〉
=

∫ T

0

〈S (y (t)) dy (t) , φ (t)〉

We therefore arrive at the Euler equation

αω̈α (t) + S2 (y (t))ωα (t) = S (y (t)) ẏ (t) (5)

with Neumann boundary conditions ω̇α (0) = ω̇α (T ) = 0.

4. NUMERICAL SOLUTION USING THE
GALERKIN METHOD

To approximate the solution of (5), consider the weak form∫ T

0

〈
αω̈α (u) + S2 (y (u))ωα (u) ,Ψj (u)

〉
du

=

∫ T

0

〈S (y (u)) dy (u) ,Ψj (u)〉
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for an appropriate basis {Ψj}∞j=0. Integration by parts yields

− α
∫ T

0

〈
ω̇α (u) , Ψ̇j (u)

〉
du

+

∫ T

0

〈
S2 (y (u))ωα (u) ,Ψj (u)

〉
du

=

∫ T

0

〈S (y (u)) dy (u) ,Ψj (u)〉 (6)

To proceed we introduce a concrete basis, namely

Ψi (t) =


[νi (t) , 0, 0]

T if 0 ≤ i ≤ n− 1

[0, νi−n (t) , 0]
T if n ≤ i ≤ 2n− 1

[0, 0, νi−2n (t)]
T if 2n ≤ i ≤ 3n− 1

and {νi}∞i=0 is the Fourier cosine basis, i.e. νi (t) = cos
(
πit
T

)
.

In this paper we consider estimators of ωα of the form

ω(n)
α (t) =

3n−1∑
i=0

ciΨi (t) (7)

where ci ∈ R. Note that ω̇(n)
α (0) = ω̇

(n)
α (T ) = 0.

Substituting (7) for ωα in (6) and using the identity
S2 (y) = yyT − I on the sphere yields

− α
3n−1∑
i=0

ci

∫ T

0

〈
Ψ̇i (u) , Ψ̇j (u)

〉
du

+

3n−1∑
i=0

ci

∫ T

0

yT (u) Ψi (u) yT (u) Ψj (u) du

−
3n−1∑
i=0

ci

∫ T

0

〈Ψi (u) ,Ψj (u)〉 du

=

∫ T

0

〈S (y (u)) dy (u) ,Ψj (u)〉 , j = 0, . . . , 3n− 1

Scaling by − 1
T we obtain a 3n dimensional symmetric

linear system for the coefficients,

Kc = F (8)

where for i, j ∈ {0, . . . , 3n− 1},

Ki,j =


ai,j if i 6= j

ai,j + 1 if i = j = 0 mod n

ai,j + 1
2 + α (j mod n)2π2

2T 2 else

with

ai,j = − 1

T

∫ T

0

yT (u) Ψi (u) yT (u) Ψj (u) du

and finally,

Fi = − 1

T

∫ T

0

〈S (y (u)) dy (u) ,Ψi (u)〉

The form of K is a consequence of the following orthog-
onality relations,

1

T

∫ T

0

〈
Ψ̇i (u) , Ψ̇j (u)

〉
du =

{
(j mod n)2π2

2T 2 if i = j

0 if i 6= j

Also we have

1

T

∫ T

0

〈Ψi (u) ,Ψj (u)〉 du =


1 if i = j = 0 mod n
1
2 if i = j 6= 0 mod n
0 if i 6= j

Experimentally the system matrix K is diagonally dominant,
so we apply a diagonal preconditioner M on the left of (8)
with entries

Mi,i =
1

Ki,i
(9)

Experimentally this improves conditioning dramatically. For
large n one might apply an iterative method such as the clas-
sical conjugate gradient method to the preconditioned system
as it is symmetric and positive definite.

5. SIMULATIONS

In this section we first present an algorithm for the simula-
tion of the SDE (2), before examining the performance of the
Tikhonov-Galerkin estimator.

5.1. Geometric SDE Simulation

We propose the following algorithm for the simulation of (2),
for 1 ≤ k ≤ N ,

yk+1 = exp
(
MT
k

)
yk (10)

exp
(
MT
k

)
= I − sin (θk)

θk
Mk +

1− cos (θk)

θ2k
M2
k (11)

θk = ‖Mk‖ (12)
Mk = Sk + Jk (13)

Sk = σS (∆Wk) = σ
√
δS (εk) (14)

Jk =
δ

2
(S (ω (kδ)) + S (ω (kδ + δ))) (15)

where εk
i.i.d.∼ N (0, I) and δ = T

N is a fixed step size which
we choose to be δ = 10−4 in all simulations to follow.

The algorithm (10) - (15) can be interpreted as a ver-
sion of the stochastic Runge-Kutta Munthe-Kaas method de-
veloped in [14]. We use an Euler-Maruyama scheme com-
bined with the trapezoidal rule to approximate the integral of
S (ω (t)) arising in the associated SDE in so (3) [14]. Each
iterate is then mapped to SO (3) using the Rodriguez formula
for the matrix exponential, so that the Lie group structure is
preserved at each iteration. This implies for example that
‖yk‖ = 1 for all k.
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5.2. Tikhonov-Galerkin Simulations

To evaluate the performance of the Tikhonov-Galerkin method,
we first make some relevant definitions. Throughout, we take

ω0 (t) := [7, 1,−5]
T

+ 5 cos

(
2πρt

T

)
[1, 1, 1]

T (16)

where ρ is the number of periods of ω0 (t) available. The
relative mean integrated squared error measure (RMISE) is

RMISE =

∫ T
0
E
[∥∥∥ω(n)

α (t)− ω0 (t)
∥∥∥2] dt∫ T

0
‖ω0 (t)‖2 dt

RMISE is estimated using sample averages over 100 trajec-
tories, with δ = 10−4 and an N = T

δ point Riemann sum
approximation for the integral.

A dimensional analysis of (2) and (5), noting ω0 (t) has
dimensions of inverse time, reveals that a scale free regular-
ization parameter is

γ := ασ4

With that in mind, the signal to noise ratio (in dB) in this
setting is given by

SNR := 10 log10

(
1

Tσ4

∫ T

0

‖ω0 (t)‖2 dt

)
Figure 1 demonstrates for ρ = 1, n = 25 the relationship

between RMISE and γ for several SNR. Further studies are
required to determine the optimal choice of n. Figures 2 and
3 demonstrate the pathwise approximation of our estimator
under optimal γ (according to Figure 1) for 20dB SNR and
40dB SNR respectively.
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Fig. 1. RMISE against log10 (γ) for ρ = 1. T = 1, δ =
10−4, n = 25.

6. CONCLUSION

In this paper we developed an offline nonparametric estimator
for the angular velocity of a rigid body evolving according
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Fig. 2. One realization of ω(25)
α (t) against ω0 (t) for ρ = 1,

δ = 10−4, SNR = 20dB and γ = 10−2.
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Fig. 3. One realization of ω(25)
α (t) against ω0 (t) for ρ = 1,

δ = 10−4, SNR = 40dB and γ = 10−5.

to a diffusion process in SO(3). We introduced a Tikhonov
penalized least squares problem and solved the resulting
stochastic Euler equation using the Galerkin method. Di-
agonal preconditioning of the resulting system was found
to be effective. A novel manifold-preserving numerical in-
tegrator was proposed for the SDE in order to examine the
performance of the estimator.

We found that increasing the SNR resulted in a smaller
optimal regularization parameter, with respect to the rela-
tive mean integrated squared error criterion. Additionally,
a higher SNR resulted in better RMISE performance when
the regularization parameter was chosen optimally. Pathwise
approximation results for different SNR regimes were also
shown.

Further investigation into the theoretical properties, in-
cluding principled approaches for regularization parameter
selection, as well as the effect of n and ρ will be the subject
of future work.
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