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ABSTRACT
In this work, we design complete orthonormal basis functions,

which are referred to as optimal basis functions, that span the vector
sum of subspaces formed by band-limited spatially concentrated and
space-limited spectrally concentrated functions. The optimal basis
are shown to be a linear combination of band-limited functions with
maximized energy concentration in some spatial region of interest
and space-limited functions which maximize the energy concentra-
tion in some spectral region. The linear combination is designed
with an optimality condition of maximizing the product of measures
of energy concentration in the spatial and spectral domain. We also
show that each optimal basis is an eigenfunction of a linear operator
which maximizes the product of energy concentration measures in
spatial and spectral domain. Finally, we discuss the properties of the
proposed optimal basis functions and highlight their usefulness for
the signal representation and data analysis due to the simultaneous
concentration of the proposed basis functions in spatial and spectral
domains.

Index Terms— energy concentration problem; localized spec-
tral analysis; spatial-spectral concentration; unit sphere.

1. INTRODUCTION

The development of spherical signal processing techniques has been
an area of research and exploration in order to cater the needs of ap-
plications in various branches of science and engineering (e.g., [1–
3]), where the signals (finite energy functions) are inherently defined
on the sphere. In most of these signal processing techniques [1,4–6],
the signal is either analysed in spatial domain (sphere) or spectral
domain. The spectral domain is characterized by spherical harmonic
basis functions, which serve as natural basis functions for signals de-
fined on the sphere [1]. For the representation of signals which have
energy concentration in some spatial or spectral region or the recon-
struction of a signal from its incomplete measurements, the spherical
harmonic basis may not be an optimal choice [3, 7–10]. In this pa-
per, we consider the problem of designing basis functions which are
simultaneously concentrated in spatial and spectral domain.

1.1. Relation to Prior Work

It is well-known that functions cannot have finite support in both
the spatial (or time) and spectral (or frequency) domain at the same
time [3, 11]. The Slepian concentration problem [11–13], initially
formulated in the Euclidean domain, has been recently investigated
for signals defined on the sphere to obtain the band-limited (or space-
limited) basis functions with optimal concentration in some spa-
tial (or spectral) region of interest [3, 7]. The orthogonal family
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of functions, referred as Slepian basis, arise from the solution of
Slepian concentration problem on the sphere have been used in var-
ious signal processing applications [4–6, 8, 9]. The Slepian basis
are localized in one domain (spatial or spectral) and concentrated in
the other domain and therefore becomes an attractive choice for the
representation and analysis of spatially (or spectrally) concentrated
band-limited (or space-limited) signal [3].

In addition to the Slepian concentration problem on the sphere,
a quadratic variational framework, originally formulated by Franks
for time-frequency signals, has been developed in [14] for signals
on the sphere, which maximizes the sum of arbitrarily weighted
spatial and spectral energy concentration measures, and therefore
generalizes the Slepian concentration problem. For signals on the
sphere, the energy concentration problems, explored in the litera-
ture, either maximize the measure of energy concentration in spatial
or spectral domain, or maximize the weighted sum of measures of
energy concentration in spatial and spectral domain. However, the
problem of maximizing the product of energy concentrations mea-
sures, investigated for signals defined on one dimensional Euclidean
domain (time) in [15], has not been considered for signals on the
sphere.

1.2. Contributions

In this work, we seek an orthogonal family of functions which are
maximally concentrated in both the spatial and spectral domain. We
consider the design of basis functions for the subspace, referred as
joint subspace, given by the vector sum of two subspaces formed
by band-limited functions and space-limited spectrally concentrated
functions. We construct a class of functions for the joint subspace as
a linear combination of the band-limited functions and space-limited
functions, which arise from the solution of Slepian concentration
problems on the sphere. We optimise the linear combination such
that the product of measures of energy concentration in spatial and
spectral domain is maximized. We later show that the constructed set
of functions forms a complete orthonormal basis, referred as optimal
basis, for the joint subspace. Furthermore, we present the properties
exhibited by the optimal basis functions. In order to quantify the
energy concentration in the spatial and spectral regions of interest,
we also formulate a linear operator which maximizes the product of
energy concentration measures and show that the each optimal basis
function is an eigenfunction of the operator.

We organize the rest of the paper as follows. We review the
mathematical background and Slepian concentration problem on the
sphere in Section 2 and Section 3 respectively. In Section 4, we con-
struct a set of functions which serves as optimal basis for the joint
subspace. The concluding remarks are then made in Section 5.
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2. SIGNALS ON THE SPHERE

We consider the complex-valued square-integrable functions defined
on the sphere, denoted by S

2. These functions form a Hilbert space
denoted by L2(S2) equipped with the following inner product for
two functions f, h ∈ L2(S2),

〈f, h〉 �
∫
S2

f(x̂)h(x̂) ds(x̂), (1)

where x̂ ≡ x̂(θ, φ) � (sin θ cosφ, sin θ sinφ, cos θ)T ∈ R
3

is a unit vector that parameterizes a point on the unit sphere
with θ ∈ [0, π] denoting the co-latitude and φ ∈ [0, 2π) denot-
ing the longitude, (·) denotes the complex conjugate operation,
ds(x̂) = sin θ dθ dφ is the differential area element on S

2 and
the integration is carried out over S

2. The inner product induces
a norm ‖f‖ � 〈f, f〉1/2. We refer the functions with finite en-
ergy (finite induced norm) as “signals on the sphere”. Also define
〈f, g〉R �

∫
R
f(x̂)g(x̂) ds(x̂) for any region R ⊂ S

2

2.1. Spherical Harmonics and Spectral Domain Representation

Spherical harmonics, denoted by Y m
� (θ, φ) for integer degree � ≥ 0

and integer order m ∈ [−�, �] form complete orthonormal set of
basis functions for L2(S2), and therefore we can expand any signal
f ∈ L2(S2) as

f(x̂) =

∞∑
�=0

�∑
m=−�

(f)m� Y m
� (x̂), (f)m� � 〈f, Y m

� 〉, (2)

where (f)m� denotes the spherical harmonic coefficient of degree �
and order m. The spherical harmonic coefficients (f)m� form the
spectral domain representation of the signal.

2.2. Important Subspaces of L2(S2)

The signal f is said to be band-limited within the spectral region
AL � {0 ≤ � ≤ L− 1, |m| ≤ �} if (f)m� = 0, ∀� > L. The set of
such band-limited functions form an L2 dimensional space HL as a
subspace of L2(S2). Also define HR as the space of finite energy
space-limited functions confined within the region R ⊂ S

2. HR is
an infinite dimensional subspace of L2(S2).

2.3. Important Operators on the Sphere

For signals on the sphere, we define a linear integral operator S de-
fined by its kernel S(x̂, ŷ) using Fredholm integral equation, as [1]

(Sf)(x̂) =

∫
S2

S(x̂, ŷ) f(ŷ)ds(ŷ), (3)

where S(x̂, ŷ) is the kernel for an operator S.

Spatial Selection Operator : Define the spatial selection operator SR

that selects the function in a region R ⊂ S
2 with kernel given by

SR(x̂, ŷ) � IR(x̂)δ(x̂, ŷ), (4)

where IR(x̂) = 1 for x̂ ∈ R ⊂ S
2 and IR(x̂) = 0 for x̂ ∈ S

2\R is
an indicator function of the region R and δ(x̂, ŷ) denotes the Dirac
delta function on the sphere.

Spectral Selection Operator : Define the spectral selection operator
SL, which band-limits the signal within the spectral region AL, by
its kernel

SL(x̂, ŷ) �
L−1∑
�=0

�∑
m=−�

Y m
� (x̂)Y m

� (ŷ), (5)

which is also referred to as band-limited Dirac delta function [1, 3].
The selection operators SR and SL project the signal f ∈

L2(S2) onto the subspaces HR and HL, respectively. Using the
selection operators, we also define ‖f‖2R � 〈SRf,SRf〉 = 〈f, f〉R
and ‖f‖2L � 〈SLf,SLf〉, which respectively quantify the energy
concentration of the signal f ∈ L2(S2) in the spatial region R and
the spectral region AL.

3. SPATIAL-SPECTRAL CONCENTRATION ON THE
SPHERE AND PROBLEM FORMULATION

In this section, we review the Slepian concentration problem on the
sphere of finding the band-limited functions with maximum energy
concentration in the spatial region or the space-limited functions
with maximum energy concentration in the spectral region [3, 7, 8].

The problem of maximizing the spatial concentration of unit en-
ergy band-limited function f ∈ HL within the spatial region R ⊂ S

2

can be formulated as a Fredholm integral equation, given by [3]

(SLSRf) (x̂) = λf(x̂), x̂ ∈ S
2, (6)

or equivalently, using (4), (5) and (2), as an algebraic eigenvalue
problem of size L2, given by
L−1∑
�′=0

�′∑
m′=−�′

(f)m
′

�′

∫
R

Y m′
�′ (x̂)Y m

� (x̂)ds(x̂) = λ(f)m� , �, m ∈ AL,

the solution of which provides L2 band-limited eigenfunctions. Let
the eigenfunctions be denoted by fp for p ∈ [1, L2]. The eigenvalue
0 < λp < 1 associated with each band-limited eigenfunction fp
quantifies the energy concentration of the eigenfunction in the region
R. The eigenfunctions are indexed such that 1 > λ1 ≥ λ2 ≥ . . . ≥
λL2 > 0.

For the maximization of the spectral concentration of unit energy
space-limited function h ∈ HR within the spectral region AL, an
eigenvalue problem, similar to (6), is given by [3]

(SRSLh) (x̂) = λh(x̂), x̂ ∈ R. (7)

The Fredholm integral equations in (6) and (7) are exactly same for
x̂ ∈ R [3], therefore the band-limited eigenfunctions of (6) are iden-
tical to the space-limited eigenfunctions of (7) within the region R.
Each band-limited eigenfunction fp ∈ HL gives rise to a space-
limited eigenfunction hp = SRfp ∈ HR for p ∈ [1, L2]. The
eigenvalue λp serves as a measure of the energy concentration of the
space-limited function hp in the spectral region Ap.

The band-limited and space-limited eigenfunctions follow the
following orthogonality relations [3]

〈fp, fq〉 = δp,q = ‖fp‖2L, ‖fp‖2R = 〈fp, fq〉R = δp,qλp,

‖hp‖2R = 〈hp, hq〉 = 〈hp, hq〉R = δp,q λp, ‖hp‖2L = λ2
p, (8)

for p, q ∈ [1, L2], where δp,q is the Kronecker delta.

3.1. Problem Under Consideration

The set of band-limited eigenfunctions fp ∈ HL, p ∈ [1, L2] forms
an orthonormal basis, referred as Slepian band-limited basis, for the
subspace HL. Furthermore, space-limited eigenfunctions hp ∈ HR,
p ∈ [1, L2] serve as orthogonal basis functions for the representa-
tion of any space-limited function within the spectral region AL.
Let the subspace spanned by the space-limited eigenfunctions be
denoted by H̃R ⊂ HR ⊂ L2(S2). For the representation of a
signal, the use of band-limited or space-limited eigenfunctions be-
comes an attractive choice if the band-limited signal is concentrated
in some spatial region R or the space-limited signal is concentrated
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in some spectral region AL, respectively, as such signals can be rep-
resented using fewer number of eigenfunctions, in comparison to
their representation in the spherical harmonic basis functions [3]. In
practice, the signal may not be completely band-limited nor space-
limited. Therefore the functions which maximize energy concentra-
tion in both the spatial and spectral domain become a more suitable
choice for the representation of signal that is neither band-limited,
nor space-limited, but, concentrated (simultaneously) in both the
spatial and spectral domains. In this work, we develop basis func-
tions which maximize the energy concentration, simultaneously, in
both the spatial and spectral domains.

4. DESIGN OF OPTIMAL BASIS

We develop basis functions, which span the subspace HL+ H̃R, the
vector sum of HL and H̃R, and maximize the product of the energy
concentration in the spatial region R and the energy concentration
in the spectral region AL. We refer to the subspace HL + H̃R as
joint subspace. Any signal z ∈ HL + H̃R can be written as z(x̂) =
zL(x̂) + zR(x̂), where zL ∈ HL and zR ∈ H̃R. Since the band-
limited eigenfunctions fp, p ∈ [1, L2] are maximally concentrated
in the spatial region R, while the space-limited eigenfunctions hp =
SRfp, p ∈ [1, L2] are maximally concentrated in the spectral region
AL, we construct a class of functions as linear combinations of the
space-limited and band-limited bases, as follows:

gp(x̂) � αp fp(x̂) + βp hp(x̂), hp(x̂) = (SRfp)(x̂), (9)

for p ∈ [1, L2], where we optimally choose αp and βp such that the
product of the measures of the energy concentration of the function
gp in the spatial region R and in the spectral region AL is maximized
with respect to unit energy constraint on gp. Since fp ∈ HL and
hp ∈ H̃R, we note that every gp ∈ HL + H̃R. We determine the
weights αp and βp in the following theorem.

Theorem 1. For function gp ∈ HL + H̃R, formulated in (9), the
product of the energy concentration in the spatial region R ⊂ S

2,
given by ‖gp‖2R, and the energy concentration in the spectral region
AL, given by ‖gp‖2L is maximized with respect to the unit energy
constraint on gp for the following two pairs of αp and βp

αp,1 = F, βp,1 =
F√
λp

, αp,2 = G, βp,2 = − G√
λp

,

(10)

where F = (2 + 2
√

λp)
−1/2 and G = (2− 2

√
λp)

−1/2.

Proof. Using the properties of band-limited and space-limited
bases (eigenfunctions), given in (8), the spatial energy concentration
and the spectral energy concentration can be formulated as

‖gp‖2R = λp(αp + βp)
2, ‖gp‖2L = (αp + βpλp)

2. (11)

The maximization of the product of ‖gp‖2R and ‖gp‖2L with respect
to the unit energy constraint ‖gp‖2 = 1 yields the two solutions for
αp and βp, given in (10).

Remark 1. Since we obtain two pairs of αp and βp, we define a set
of functions, given by
gp,k(x̂) = αp,k fp(x̂) + βp,k (SRfp)(x̂), p ∈ [1, L2], k = 1, 2,

(12)
with the measures of the energy concentration, given by,

‖gp,k‖2R = ‖gp,k‖2L =
1− (−1)k

√
λp

2
, k = 1, 2, (13)

which are obtained by substituting the values for αp,k and βp,k,
given in (10), in (11).

We now show that the functions given in (12) serve as complete basis
for the joint subspace HL + H̃R.

Theorem 2. The set of functions gp,k, p ∈ [1, L2], k = 1, 2, of the
form given in (12), forms a complete orthonormal basis of the joint
subspace HL + H̃R for αp,k and βp,k given in (10).

Proof. Since hp = SRfp, (8) implies that 〈hp, fq〉R = λpδp,q ,
which together with the orthogonality of band-limited functions and
space-limited functions, imply that the functions gp,1 and gq,2 for
p, q ∈ [1, L2], p �= q are orthogonal (in fact orthonormal due to
the unit energy constraint on gp,k) to each other for any values of
αp,1, αq,2, βp,1 and βq,2. For the values of αp,k and βp,k given in
(10), it can be easily shown that gp,1 and gp,2 also become orthonor-
mal for each p ∈ [1, L2]. Since each of the subspaces H̃R and HL

is of dimension L2, we note that HL + H̃R is 2L2 dimensional
subspace and therefore the 2L2 number of orthonormal functions
gp,k ∈ HL + H̃R for p ∈ [1, L2], and k = 1, 2 form a complete
basis for HL + H̃R.

We now have a set of functions, gp,k, p ∈ [1, L2], k = 1, 2,
which forms the basis for the joint subspace HL + H̃R. Since these
basis functions are designed with an optimality condition of maxi-
mizing the product of the measures of the energy concentration in
the spatial region R and spectral region AL, we refer to these basis
as optimal basis. Among the optimal basis functions, we are more
interested in the functions that are highly concentrated in the spatial
region R and in the spectral region AL. The energy concentration
levels, given in (13), measure the energy of the signal spatial region
R and the spectral region AL and indicate that each gp,k attains equal
energy concentration in both the spatial and spectral regions. How-
ever, these measures do not quantify the simultaneous concentration
in these regions of interest. In order to derive some measure for
the the simultaneous energy concentration, we develop a linear in-
tegral operator by formulating a Fredholm integral equation for the
problem of maximizing the product of energy concentration levels
in both the spatial domain and spectral domain with in the regions
of interest. We then show that each of the basis functions gp,k is
an eigenfunction of the operator and the eigenvalue associated with
each eigenfunction serves as a measure of simultaneous concentra-
tion.

Theorem 3. The function w ∈ L2(S2) which maximizes the product
of the energy concentration in the spatial region R ⊂ S

2, given
by ‖w‖2R , and the energy concentration in the spectral region AL,
given by ‖w‖2L , is an eigenfunction of an integral operator SRL with
kernel given by

SRL(x̂, ŷ) =
IR(x̂) + IR(ŷ)

2

L−1∑
�=0

�∑
m=−�

Y m
� (x̂)Y m

� (ŷ), (14)

and the eigenvalue, denoted by η, of the eigenfunction w such that
(SRLw)(x̂) = ηw(x̂) is given by

η = ‖w‖2R(2‖w‖2R − 1). (15)

Proof. We apply the variational principle, also adopted in [15], to
find the unit energy function w, that maximizes the product of the
energy concentration levels in the spatial and spectral region. Let
W ε(x̂) = w(x̂) + εz(x̂), where z ∈ L2(S2) and ε ∈ R is a small
number that quantifies the perturbation in the solution. We find w by
maximizing the product of the energy concentration given by

Q =
‖W ε‖2R
‖W ε‖2

‖W ε‖2L
‖W ε‖2 , (16)
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where we have divided the energy concentration levels by ‖W ε‖2
for unit energy normalization. Since 0 ≤ Q ≤ 1, we maximize
logQ in order to maximize Q as follows

d

dε
(logQ)

∣∣∣∣
ε=0

=
d

dε

(
log

‖W ε‖2R
‖W ε‖2 + log

‖W ε‖2L
‖W ε‖2

)∣∣∣∣
ε=0

= 0,

which is simplified, by noting that ‖W ε‖R = 〈SRW
ε,SRW

ε〉 and
‖W ε‖L = 〈SLW

ε,SLW
ε〉, to obtain

1

2 ‖w‖2R
(SR(w z)) (x̂) +

1

2‖w‖2L
(SL(w z)) (x̂)− w(x̂)z(x̂) = 0,

which holds for every z ∈ L2(S2), therefore

‖w‖2L
2

(SRw) (x̂) +
‖w‖2R
2

(SLw) (x̂)− ‖w‖2R‖w‖2Lw(x̂) = 0.

(17)

Now, we multiply (17) by w(x̂), apply the operator SR and integrate
over the sphere to obtain

‖w‖2L
2

+
1

2
〈SRSLw,SRw〉 − ‖w‖2R‖g‖2L = 0. (18)

Again multiplying (17) by w(x̂), applying the operator SL and inte-
grating over the sphere yield

1

2
〈SLSRw,SLw〉+ ‖w‖2R

2
− ‖w‖2R‖w‖2L = 0. (19)

Using the formulation of kernels for the operators SR and SL, given
in (4) and (5), respectively, and employing the orthonormality of
spherical harmonics, it can be shown that

〈SRSLw,SRw〉 = 〈SLSRw,SLw〉 =
L−1∑
�=0

�∑
m=−�

(w)m� 〈Y m
� , w〉R,

which implies, through (18) and (19), that
‖w‖2R = ‖w‖2L, (20)

which is used in the remainder of the proof. By applying the operator
SL on (17), we get (SLSR)w(x̂) = (2 ‖w‖2R − 1)SLw(x̂), which
is then substituted back in (17) to obtain
(SLSRw) (x̂) = (2‖w‖2R − 1)

(
2‖w‖2R w(x̂)− (SRw)(x̂)

)
.

(21)

So far, the formulations in the proof are valid for x̂ ∈ S
2. For x̂ ∈ R,

we can write (17) as
(SLw) (x̂) = (2‖w‖2R − 1)w(x̂), x̂ ∈ R, (22)

which, when added to (21), yields (after rearranging terms)
(SLSRw + SLw) (x̂) = 2 ‖w‖2R(2‖w‖2R − 1)w(x̂), x̂ ∈ R

(SLSRw) (x̂) = 2 ‖w‖2R(2‖w‖2R − 1)w(x̂), x̂ ∈ S
2\R.
(23)

Together with the definition of kernels for the operators SL and SR,
given in (4) and (5), respectively, the above equation implies that
SRLw(x̂) = η w(x̂), where the kernel of the operator SRL is given
in (14) and η given in (15).

Remark 2. Using (23), it can be shown that each of the basis
function gp,k, given in (12), is an eigenfunction of the opera-
tor SRL, that is, (SRLgp,k)(x̂) = ηp,kgp,k(x̂), where ηp,k =
‖gp,k‖2R(2‖gp,k‖2R−1) as given in (15) serves as a measure of con-
centration of energy in the spatial and spectral regions of interest.

Remark 3. It can also be proven that the operator SRL is a pro-
jection operator that projects a signal w ∈ L2(S2) to the subspace
HL + H̃R. However, this is beyond the scope of current work. Fur-
thermore, the operator SRL is self-adjoint, by inspection of (14),

and shown to be compact [1], and therefore the optimal basis func-
tions are the only eigenfunctions of the operator SRL.

4.1. Properties and Use of Optimal Basis Functions

The results presented in the Theorems 1-3 allow us to summarise
the following properties of optimal basis functions gp,k, p ∈
[1, L2], k = 1, 2.
P1: In addition to being orthonormal over L2(S2) or HL+H̃R (The-
orem 2), optimal basis functions gp,k are orthogonal over HL and
HR, that is

〈gp,k, gq,k〉R = ‖gp,k‖2Rδp,q, 〈gp,k, gq,k〉L = ‖gp,k‖2Lδp,q.
(24)

P2: Since the eigenvalues are indexed such that 1 > λp ≥ λq > 0
for p < q and p, q ∈ [1, L2], the product of energy concentra-
tion measures for optimal basis functions have the following struc-
ture (using result from Theorem 1) for p < q and p, q ∈ [1, L2]:

1 >‖gp,1‖2R‖gp,1‖2L > ‖gp,1‖2R‖gp,1‖2L > 0.25,

0.25 >‖gp,2‖2R‖gp,2‖2L > ‖gq,2‖2R‖gq,2‖2L > 0.

P3: Following remark 2, the eigenvalue ηp,k decreases monotoni-
cally to zero as p increases from 1 to L2 for k = 1, whereas, it
decreases for k = 2 from a negative value to a minimum and then
increases to zero as p increases from 1 to L2.
P4: We order the proposed optimal basis gp,k, p ∈ [1, L2], k = 1, 2
as ψ1, ψ2, . . . , ψ2L2 , in the order of decreasing magnitude of their
eigenvalues. Following Theorem 2 and remark 3, we can project any
signal w ∈ L2(S2) to the subspace HL + H̃R using the proposed
optimal basis as follows:

w(x̂) =
2L2∑
p=1

〈w,ψp〉ψp(x̂). (25)

If the signal w is concentrated in the spatial region R in the spatial
domain and in the spectral region AL in the spectral domain, we
expect that it can be represented using fewer number of terms as the
inner product 〈w,ψp〉 decays to zero as p increases from 1 to 2L2.

5. CONCLUSIONS

We have designed complete orthonormal basis functions for the
joint subspace given by the vector sum of two subspaces formed
by band-limited functions and space-limited spectrally concentrated
functions. The basis functions are constructed as a linear combi-
nation of the band-limited functions, which maximize the energy
concentration in some spatial region of interest, and space-limited
functions, which maximize the energy concentration in some spec-
tral region of interest. The linear combination of these functions is
optimised such that the product of measures of the energy concentra-
tion in spatial and spectral domain is maximized. We also show that
the optimal basis functions are eigenfunctions of a linear operator
which maximizes the product of measures of energy concentration
in the spatial and spectral regions of interest. The magnitude of
the eigenvalue associated with each eigenfunction quantifies the
energy concentration in the spatial and spectral regions of inter-
est. We expect that the proposed basis of simultaneously spatially
and spectrally concentrated functions should be useful for signal
representation and data analysis in a variety of applications.
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