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ABSTRACT

We present computationally efficient and analytically tahte al-

gorithms for identifying a given number of “non-defectiviééms

from a large population containing a small number of “defect

items under a noisy Non-adaptive Group Testing (NGT) fraorew
In contrast to the classical NGT, where the main goal is totifie

thecompleteset of defective items, the main goal ohan-defective
subset recoverglgorithm is to identify asubsetof non-defective
items given the test outcomes. In this paper, we present thire
gorithms and corresponding bounds on the number of testiree
for successful non-defective subset recovery. We considendom,
non-adaptive pooling strategy with noisy test outcomesereritwe
account for the impact of both additive noise (false posgjand di-
lution noise (false negatives). We provide simulation sso high-

light the relative performance of the algorithms, and to destrate
the significant improvement they offer over existing apphas, in
terms of the number of tests required for a given success rate

Index Terms— Healthy subset identification, Finding zeros,
Non-adaptive group testing, Data streaming, Medical singe

1. INTRODUCTION
Group testing finds applications in diverse engineeringl$isuich as
DNA sequencing, medical screening [1], data streaming ketth-
ing [2, 3], industrial testing [4], data pattern mining [3feThe ba-
sic goal in classical group testing is to identify a small btk
unknown “defective” items from a large set &f items by perform-
ing a relatively small number of group tests [1]. Each groest t
provides a binary indication as to whether or not the pooters
under test contains any defective items. One of the usefidnig
of group testing is non-adaptive group testing (NGT) [1]fwhere
different tests are conducted simultaneously, i.e., tbis @0 not use
information provided by the outcome of any other test. Anamp
tant aspect of NGT is the design of the groups or pools of ideliv
uals that go into each test. One popular approach is randaf po
ing [6, 8, 9], where the items included in the group test amseh
uniformly at random from the population. With random poglim
key issue is the design of computationally efficient recpwgo-
rithms for the defective set, given the set of noisy test autkes. In
this work, in contrast to the defective set identificationkdem, we
study thenon-defective subset identificatipmoblem in the noisy,
non-adaptive group testing with random pooling (NNGT-Rupe
We refer to the non-defective subset identification probbsm
that of finding asubsetconsisting ofL (< N — K) non-defective
items from a population alV items containing a set d < N de-
fective items [10]. There are many applications where thad goto
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identify only a small subset of non-defective items rathantiden-
tifying all the defective items. For example, consider thectrum
hole search problem in a cognitive radio (CR) network settiis
known that the primary user occupancy is sparse in the freyue
domain, over a wide band of interest [11, 12]. This is eqartto
having a small subset of defective items embedded in a laigefs
candidate frequency bins. The secondary users do not neéerto
tify all the frequency bins occupied by the primary usergytbnly
need to discover relatively small unoccupied sub-bandstigpsthe
secondary communications, i.e., a non-defective subsettifita-
tion problem. As another example, consider a scenario fhendata

stream domain [2, 3]. We receive a high volume SMS data stream

in response to a trivia contest run during a television shdwe
SMS data is processed to ascertain whether the answer ectorr
The outcome is streamed to the TV studio servefisone.number,
flag ), whereflag= 1(= —1) indicating a correct (wrong) answer.
Owing to the simplicity of trivia questions, we expect a kma-
jority of the flag variables to be equal td. Due to large number
of received records and severe memory constraints, thestfatm
is often summarized using a small number of “sketches” ugsy
matrices, and the sketch vector is equivalent to the outoaentor
in the NGT setting [2,9]. The objective is to use the sketattmeto
identify a small group of responders with correct answees, the
winners of the contest, and is thus a non-defective subsatifita-
tion problem. In [10], using information theoretic argurtent was
shown that compared to the conventional approaches ofifigiet
the non-defective subset by first identifying the defectee or by
testing individual items one by one, directly searchinggiof-sized
non-defective subset offers a significant reduction in thealper of
tests, especially wheh is small compared t&V — K. In this paper,
we develop computationally efficient algorithms for norfedive
subset identification in an NNGT-R framework.

Although the problem of non-defective subset identificatias
not yet been explored in the literature, it is a generaliratif the
defective set identification problem. In particular, nettbat identi-
fying L = N — K non-defective items is equivalent to identifying
K defective items. Hence, the algorithms presented in thik wan
be related to algorithms from the rich available literatiarefinding
the defective set; see [1] for an excellent collection ofgmg results
and references. In general, for the NNGT-R framework, thread
approaches have been adopted for defective set recover¥ifsl,
the row based approach, also frequently referred to as thige'h
decoding algorithm, finds the defective set by findalgthe non-
defective items [7,13]. The second popular decoding ambris
based on the idea of finding defective items iteratively (@edily)
by “appropriately” matching the column of the test matrixres
sponding to a given item with the test outcome vector [1, 647,
A recent work, [15], investigates the problem of finding zeho a
sparse vector in the compressive sensing framework, andoats
poses a greedy algorithm based on correlating the columssnst
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ing matrix with the output vector (i.e., column matching)indlly,
linear programming relaxation based algorithms have besposed
in [7, 16] for defective set identification in group testiny class of
linear programs is setup by letting the boolean variablks taal
values (betweef and1) and imposing inequality or equality con-
straints to model the outcome of each pool.

In this work, we propose novel algorithms for identifying a

Additive Noise

Dilution Noise

0 0 0 0
(1-a
q
1 1 1 1
True test Noisy test True test Participating test

output output matrix entry matrix entry

non-defective subset in an NNGT-R framework. We derive non-

asymptotic upper bounds on the average error rate that tead t
theoretical guarantee on the number of tests for the praopalsm-
rithms. We summarize our main contributions as follows:

e \We propose three computationally efficient and analytycall
tractable algorithms for identifying a non-defective setbef
given size in a NNGT-R framework (see Section RpAl (row
based algorithm)CoAl (column based algorithm) ariRoLpAl
(LP relaxation based algorithm).

cessful non-defective subset recovery for each algoritfime

derived bounds are a function of the system parameters,lpame

the number of defective items, the size of non-defectivesstjb
the population size and the noise parameters.

We present numerical simulations to compare the relativeope
mance of the algorithms and to illustrate the advantage eptio-
posed algorithms compared to the conventional methodsibase
identifying the defective set followed by picking the reepad num-

ber of items from the complement set (Section 4). Due to ldck oaddltlve noise with theé™ componentu (i) ~

space, the proofs have been omitted; these will be presémtad
journal version of this work.

Notation: For any positive integen, [n] = {1,2,...,n}. Fora
vectora, a(7) denotes its™ component. supfa) denotes the support
set for the vecton. In the context of boolean vectoks, denotes the
component wise boolean complementof , andQ,, denote an all-
one and all-zero vector, respectively, of sizea < b denotes the
component-wise inequality, i.e., it mean&) < b(i) Vi. B(q),q €
[0 1] denotes the Bernoulli distribution with parameger

2. SIGNAL MODEL

In our setup, we have a population &fitems, out of whichK are
defective. LeG C [N] denote the defective set, such that = K.
We consider a non-adaptive group testing framework witldoam
pooling designs [1, 7,17, 18], where all the group tests aotdeéd a
priori and the items to be pooled in a given test are chosetoraty.
The group tests are defined by a boolean makixg {0, 1}M >,
that assigns different items to tHe group tests (pools). Thg"
pool tests the items corresponding to the columns with the j
row of X. We consider an i.i.d. random Bernoulli test matrix [17],
where eachX;; ~ B(p) for some0 < p < 1. Thus,M randomly
generated pools are specified. In the abgvs,a design parameter
that controls the average number of items being tested inglesi
group test. In particular, we chooge= £, and a specific value of
ais chosen based on the analysis of different algorithms.

When the tests are completely reliable, then the outputeoiith
tests is given by the boolean OR of the columnXoforresponding

1The above parametrized form pis motivated by our earlier work [10],
where one of the conclusions, based on information theoetuments,
was that the optimal value ¢f that minimizes the number of tests required
for “finding a non-defective subset” and “finding the defeetset” are the
same. The formx/K approximates this optimal value very well and has
been widely used in literature [6, 7, 19] when probabilistimstructions are
employed for designing the test matrices.
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We derive bounds on the number of tests that guarantee su

Fig. 1: Different types of noise in the group testing signal model.

to the defective saf. In group testing, two different noise models
are considered [6, 7,17]: (a) Aadditive noise model, where there
is a probability,q € (0,0.5], that the outcome of a group test con-
taining only non-defective items turns out to be positiveg(R);
(b) A dilution model, where there is a probability, € (0,0.5],
that a given item does not participate in a given group teist (.
Fetd, € {0,1}™. Letd,(j) ~ B(1 — u) be chosen indepen-
dently forallj = 1,2,...,M and foralli = 1,2,...,N. Let

; 2 diag(d,). Let “\/” denote the boolean OR operation. The
output vectory € {0, 1}* can be represented as

y=\/Diz; \/w,

i€g

@

€ {0,1}M is the
( ). Given the test

wherez, € {0,1}M is thez column of X, w

output vectory, our goals are the following:

(&) To find computationally efficient algorithms to identifynon-
defective items, i.e., af-sized subset belonging {&/]\G.

(b) To analyze the performance of the proposed algorithnl wi
the objective of finding the number of tests required for non-
defective subset recovery with high probability of success

As is common in the literature for defective set recoveryrisup
testing or sparse vector recovery in compressed sensieig éxist
two types of recovery results: (&on-uniform/Per-Instance recov-
ery results These state that a randomly chosen test matrix leads
to successful non-defective subset recovery with high gdvity of
success for a given fixed defective set, and,hjform/Universal
recovery resultsThese state that a random draw of test matrix leads
to a successful non-defective subset recovery with highadibity
of success for all possible defective sets. It is possibkasily ex-
tend non-uniform results to the uniform case using unionnbdsu
Hence, we primarily focus on the non-uniform recovery rssahd
present the extension to the uniform case for one of the geapo
algorithms (see Corollary 1).

3. ALGORITHMS AND MAIN RESULTS

We now propose three algorithms for non-defective subsetery.
Each algorithm takes the observed noisy output vegter{0, 1M
and the test matriX € {0, 1} as inputs, and outputs a setlof
non-defective itemsSz. The recovery is successful if the declared
set does not contain any defective item, i%,,N S = {0}.

3.1. Row Based Algorithm

Our first algorithm to find non-defective items is also the giest
and the most intuitive one. We make use of the basic fact affgro
testing that, in the noiseless case, if the test outcomegative, then
all the items being tested are non-defective.



RoAl (Row based algorithm):

e Computez = Z].Esupp@) g;r), Whereggr) is the /™ row

of the test matrix.
e Order the entries of in descending order.

e Declare the items indexed by the tépentries as the non-
defective subset.

That is, declare thé& items that have been tested most number,

of times in pools with negative outcomes as non-defectigemé
Recall that dilution noise can lead to a test containing ciefe
items in the pool being declared negative, resulting in asiptes
mis-classification of the defective items. On the other hasice
the algorithm only considers tests with negative outcoradditive
noise does not lead to mis-classification of defective itesison-
defective. However, the additive noise does lead to an asee
number of tests as the algorithm might have to discard manlgeof
pools that contain only non-defective items.

Note that existing row based algorithms for finding the difec
set [1, 7] can be obtained as a special casR@Al by settingl, =

N — K, i.e., by looking for all non-defective items. However, the

analysis in the past work does not quantify the impact of ipeter

L, and that is our main goal here. We characterize the number q

tests,M, that are required to find non-defective items with high
probability of success usirigoAl in the following theorem:

Theorem 1. (Non-Uniform recovery witfiRoAl) Let N, L, M, p, u

andq be as defined above. Defing = m Letp be chosen
as & with a = 57— There exist absolute constarifs > 0 such
that, if the number of tests are chosen as

log [K (1)

CoK(1 - u)
M= N-K-(L-1 )

(=91 =)?

@

then for a given defective set there exist positive constanici,
such that the algorithnRoAl finds L non-defective items with prob-
ability exceedingl — exp(—Mcp) — exp(—Mca).

The following corollary extends the above result to unifaen
covery of a non-defective subset usiRgAl.

Corollary 1. (Uniform recovery withRoAl) Letp and~, be as de-

fined in Theorem 1. LeVy, £ (N — K) — (L — 1). There exist

absolute constant§y > 0 andC; > 0 such that, if the number of
tests are chosen as

CoK(1 —u) log [N(AL]:T)] Cilog (¥)
(1= a)(1 =70 No T - [

M > max

then forany defective set there exist positive constafitse: > 0
such that theRoAl finds L non-defective items with probability ex-
ceedingl — exp(—Mco)—exp(—Mec1).

3.2. Column Based Algorithm

The column based algorithm is based on matching the colurhns o

the test matrix with the outcome vector. A non-defectivenitdoes
not impact the output and hence the corresponding colunireitest
matrix should be “uncorrelated” with the output. On the othend,
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“most” of the pools that test a defective item should testitpes
This forms the basis of distinguishing a defective item framon-
defective one. The specific algorithm is as follows:

CoAl (Column based algorithm): Let., > 0 be some con-
stant.

e Compute7(i) = z]y® — te(z]y) for eachi =
1,..., N, whereg, is thei™ column of X.
e Sort7(4) in descending order.

e Declare the items indexed by tap entries as the non-
defective subset.

We note that, in contrast to the row based algorit@mAl works
with pools of both negative and positive test outcomes. érathove
algorithm, the constanp., can be tuned for best performance. In
the sequel, we set.;, to be the value that optimizes an upper bound
on the number of tests, as presented in the following theorem

Theorem 2. (Non-Uniform recovery witlCoAl) Let N, L, M, p, u

andq be as defined above. LEt2 (1 — ¢) (1 — (1 —u)p)® and

Ny 1 A D(l490)
0 = Tasw- Letp be chosgn agg—oyx- Letvo = 2(1710)
nd choose)., = 1. There exists absolute constarit > 0 such
at, if the number of tests are chosen as

log [ ()]
(N-K)-(L-1)

OQK(]. — u)
M2 T+ v0) I —a)

» (3)

then for a given defective set there exists> 0 such thatCoAl finds
L non-defective items with probability exceedig- exp(—Mco).

It is tempting to compare the performanceR®AI and CoAl
by comparing required number of tests in (2) and (3), respeyt
However, such comparisons must be done with care, keepm@ith
that the required number of observations in (2) and (3) asedan
an upper bound on the average probability of error. The mijiece
tive of these results is to provide a guarantee on the nunfiiests
required for non-defective subset recovery and highlipbtdrder-
wise dependence of the number of tests on the system paramete
For the comparison of the relative performance of the allgos,
we refer the reader to Section 4, where we present numeeisalts
obtained from simulations.

3.3. Linear program relaxation based algorithm

In this section, we consider linear program (LP) relaxatitm the
non-defective subset recovery problem and identify theditimms
under which such LP relaxations lead to recovery of a noedaleie
subset with high probability of success. D¥ét be the set of all the
pools with negative outcomes aid. £ |Y;|. Let X(Ys,:) denote
the M, x N sized sub-matrix containing only the rows indexed by
Y.. Define the following linear program, with optimization iatsles

z € RY andp € RM::

minimize 150 (4
(LPO) subjectto X(Yz,:)(ly —2z) —n= Opr.s (5)
Oy <2< 1y, 1704,
1nz<L



RoLpAl (LP relaxation with negative outcome pools only) ‘ ‘ ‘
N = 256, K=16, u =-0.05, q = 0.1
e Setup and solvePO. Let z be the solution ofPO. g s —
. . —E6— RoAl
e Sortz in descending order. 510 —s— RoLpAl | |
e Declare the items indexed by the tépentries as the non- & . —8— CoAl
defective subset. kS = G
8 o ®
E m %
The above program relaxes the combinatorial problem of €hoo & 10 =3 ®'xQ 1
ing L out of N items by allowing the boolean variables to acquire < ‘E{'\ “Q
“real” values betweef and1 as long as the constraints imposed by ‘E; 128
negative pools, specified in (5), are met. Intuitively, tleiablez N
(or the variabld1,, — z]) can be thought of as the confidence with 10 5 100 150 =
which an item is declared as non-defective (or defectivdle don- Number of tests

straint1% z < L forces the program to assign high values (closB to
for “approximately” the topLL entries only, which are then declared Fig. 2: Average probability of error (APER)s. number of tests\/
as non-defective. The error analysis proceeds by firstidgrsuffi-  for all algorithms. The APER decays exponentially with

cient conditions for the non-defective subset recoveriy RibLpAl

in terms of the dual variables &P0. We then derive the number of

tests required to satisfy these sufficiency conditions Wigh prob- 35014 ‘ ‘ ‘ ‘

- . . . h : =9
ability. We summarize the main result in the following thexor. o _‘e_t—o‘—‘o e
) ) 300 , e _ 1
Theorem 3. (Non-Uniform recovery witRoLpAl ) LetN, L, M, p, 0,,10' = ©-- InDirAl
u andgq be as defined above. Lebe chosen am. If the num- £ 250] @(,.« —— (F;oﬁ: i
ber of tests are chosen as (2), then for a given defectivéhese ex- g 7 = ROL A
ist positive constante, ¢, such thatRoLpAl finds L non-defective < 20qy o-b 1
items with probability exceeding — exp(—Mco) — exp(—Mey). B N = 256, K=16, u = 0.05, q = 0.1
21501 = 0
| Avg. error rate = 10% 4
=
4. SIMULATIONS Z 100
In this section, we investigate the empirical performantthe al- 50 1
gorithms for non-defective subset recovery proposed is Work. s ‘ ‘ ‘ ‘ ‘ ‘
In contrast to the previous section, where theoretical antaes on 20 40 60 80 100 120 140 160
the number of tests were derived based on the analysis ofgthe u Size of healthy subset, L

per bounds on probability of error of these algorithms, eeeem- ) ] ]

pirically find the exact number of tests required to achiegivan ~ Fig. 3: Number of testws. size of the non-defective subset. Al-
performance level. Our setup is as follows. For a given setpef ~ 90rithm CoAl performs the best among the ones considered. The
erating parameters, i.elN, K, u, ¢ and M, we choose a defective d!rect approach for f|r_1d|ng non-defective items outper®time in-
setS, C [N] randomly such thatS,| = K, and generate the test direct approach (“InDirAl") [10].

output vectory according to (1). We then recover a subsetlof

non-defective items using different recovery algorithive, RoAl,

CoAl andRoLpAl, and compare it with the defective set. This ex- identifying the defective items [10]. We first employ a defee set
periment is repeated for different valuesifand L. For each trial,  recovery algorithm for identifying a defective set and tisbooseL
the test matrixX is generated with random Bernoulli i.i.d. entries, items uniformly at random from the complement set. This algm
i.e.,X;; ~ B(p), wherep is a design parameter. We chogse- % is referred to as “InDirAl” algorithm in Figure 3. In partitar, we
for the reasons mentioned earlier. Also, @oAl, as suggested by have used theNo-LiPo-" [7] for defective set identification. It can
Theorem 2, we sap.;, = H Unless otherwise stated, we set be easily seen that the “direct” approach significantly etftpms

N = 256, K = 16, u = 0.05, ¢ = 0.1 and varyL and M. the “indirect” approach.
Figure 2 shows the variation of the empirical probabilityeafor
with the number of tests, fof = 64 and L = 128. These curves 5. CONCLUSIONS

demonstrate the theoretically expected exponential hehat the

average error rates and the similarity of the error rategoeréince  In this work, we proposed analytically tractable and corapanally

of RoAl andRoLpAl. We also note that, as expected, the algorithmefficient algorithms for identifying a non-defective subsga given

that use tests with both positive and negative outcomesmerbet-  size in a noisy non-adaptive group testing setup. We predergper
ter than the algorithms that use only tests with negativeaues.  bounds on the number of tests for guaranteed correct idwmitdn.

Figure 3 presents the number of tedfsrequired to achieve a target Also, it was found that the column based algorit@Al gave the
error rate ofl0% as a function of theizeof non-defective subsei;. best performance for a wide range of values.otthe size of non-
We note that, for small values @&f, all algorithms perform similarly, defective subset to be identified. In this work, we have aersid a
but, in generalCoAl is the best performing algorithm across all val- randomized pooling strategy. An interesting problem foanfe work

ues ofL. We also compare the algorithms proposed in this work withis to devise deterministic group test constructions forthepose of
the indirect approach of identifying the non-defectiveriteby first  non-defective subset identification.
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