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ABSTRACT

We present computationally efficient and analytically tractable al-
gorithms for identifying a given number of “non-defective”items
from a large population containing a small number of “defective”
items under a noisy Non-adaptive Group Testing (NGT) framework.
In contrast to the classical NGT, where the main goal is to identify
thecompleteset of defective items, the main goal of anon-defective
subset recoveryalgorithm is to identify asubsetof non-defective
items given the test outcomes. In this paper, we present three al-
gorithms and corresponding bounds on the number of tests required
for successful non-defective subset recovery. We considera random,
non-adaptive pooling strategy with noisy test outcomes, where we
account for the impact of both additive noise (false positives) and di-
lution noise (false negatives). We provide simulation results to high-
light the relative performance of the algorithms, and to demonstrate
the significant improvement they offer over existing approaches, in
terms of the number of tests required for a given success rate.

Index Terms— Healthy subset identification, Finding zeros,
Non-adaptive group testing, Data streaming, Medical screening.

1. INTRODUCTION

Group testing finds applications in diverse engineering fields such as
DNA sequencing, medical screening [1], data streaming and sketch-
ing [2, 3], industrial testing [4], data pattern mining [5] etc. The ba-
sic goal in classical group testing is to identify a small setof K
unknown “defective” items from a large set ofN items by perform-
ing a relatively small number of group tests [1]. Each group test
provides a binary indication as to whether or not the pool of items
under test contains any defective items. One of the useful variants
of group testing is non-adaptive group testing (NGT) [1,6,7], where
different tests are conducted simultaneously, i.e., the tests do not use
information provided by the outcome of any other test. An impor-
tant aspect of NGT is the design of the groups or pools of individ-
uals that go into each test. One popular approach is random pool-
ing [6, 8, 9], where the items included in the group test are chosen
uniformly at random from the population. With random pooling, a
key issue is the design of computationally efficient recovery algo-
rithms for the defective set, given the set of noisy test outcomes. In
this work, in contrast to the defective set identification problem, we
study thenon-defective subset identificationproblem in the noisy,
non-adaptive group testing with random pooling (NNGT-R) setup.

We refer to the non-defective subset identification problemas
that of finding asubsetconsisting ofL (≤ N − K) non-defective
items from a population ofN items containing a set ofK ≪ N de-
fective items [10]. There are many applications where the goal is to
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identify only a small subset of non-defective items rather than iden-
tifying all the defective items. For example, consider the spectrum
hole search problem in a cognitive radio (CR) network setup.It is
known that the primary user occupancy is sparse in the frequency
domain, over a wide band of interest [11, 12]. This is equivalent to
having a small subset of defective items embedded in a large set of
candidate frequency bins. The secondary users do not need toiden-
tify all the frequency bins occupied by the primary users; they only
need to discover relatively small unoccupied sub-bands to setup the
secondary communications, i.e., a non-defective subset identifica-
tion problem. As another example, consider a scenario from the data
stream domain [2, 3]. We receive a high volume SMS data stream
in response to a trivia contest run during a television show.The
SMS data is processed to ascertain whether the answer is correct.
The outcome is streamed to the TV studio server as〈 phone.number,
flag 〉, whereflag= 1(= −1) indicating a correct (wrong) answer.
Owing to the simplicity of trivia questions, we expect a large ma-
jority of the flag variables to be equal to1. Due to large number
of received records and severe memory constraints, the datastream
is often summarized using a small number of “sketches” usingtest
matrices, and the sketch vector is equivalent to the outcomevector
in the NGT setting [2,9]. The objective is to use the sketch vector to
identify a small group of responders with correct answers, i.e., the
winners of the contest, and is thus a non-defective subset identifica-
tion problem. In [10], using information theoretic arguments, it was
shown that compared to the conventional approaches of identifying
the non-defective subset by first identifying the defectiveset or by
testing individual items one by one, directly searching foranL-sized
non-defective subset offers a significant reduction in the number of
tests, especially whenL is small compared toN −K. In this paper,
we develop computationally efficient algorithms for non-defective
subset identification in an NNGT-R framework.

Although the problem of non-defective subset identification has
not yet been explored in the literature, it is a generalization of the
defective set identification problem. In particular, notice that identi-
fying L = N −K non-defective items is equivalent to identifying
K defective items. Hence, the algorithms presented in this work can
be related to algorithms from the rich available literaturefor finding
the defective set; see [1] for an excellent collection of existing results
and references. In general, for the NNGT-R framework, threebroad
approaches have been adopted for defective set recovery [7]. First,
the row based approach, also frequently referred to as the “naive”
decoding algorithm, finds the defective set by findingall the non-
defective items [7, 13]. The second popular decoding approach is
based on the idea of finding defective items iteratively (or greedily)
by “appropriately” matching the column of the test matrix corre-
sponding to a given item with the test outcome vector [1, 6, 7,14].
A recent work, [15], investigates the problem of finding zeros in a
sparse vector in the compressive sensing framework, and also pro-
poses a greedy algorithm based on correlating the columns ofsens-
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ing matrix with the output vector (i.e., column matching). Finally,
linear programming relaxation based algorithms have been proposed
in [7, 16] for defective set identification in group testing.A class of
linear programs is setup by letting the boolean variables take real
values (between0 and1) and imposing inequality or equality con-
straints to model the outcome of each pool.

In this work, we propose novel algorithms for identifying a
non-defective subset in an NNGT-R framework. We derive non-
asymptotic upper bounds on the average error rate that lead to a
theoretical guarantee on the number of tests for the proposed algo-
rithms. We summarize our main contributions as follows:

• We propose three computationally efficient and analytically
tractable algorithms for identifying a non-defective subset of
given size in a NNGT-R framework (see Section 3):RoAl (row
based algorithm),CoAl (column based algorithm) andRoLpAl
(LP relaxation based algorithm).

• We derive bounds on the number of tests that guarantee suc-
cessful non-defective subset recovery for each algorithm.The
derived bounds are a function of the system parameters, namely,
the number of defective items, the size of non-defective subset,
the population size and the noise parameters.

We present numerical simulations to compare the relative perfor-
mance of the algorithms and to illustrate the advantage of the pro-
posed algorithms compared to the conventional methods based on
identifying the defective set followed by picking the required num-
ber of items from the complement set (Section 4). Due to lack of
space, the proofs have been omitted; these will be presentedin a
journal version of this work.
Notation: For any positive integern, [n] , {1, 2, . . . , n}. For a
vectora, a(i) denotes itsith component. supp(a) denotes the support
set for the vectora. In the context of boolean vectors,ac denotes the
component wise boolean complement ofa. 1n and0n denote an all-
one and all-zero vector, respectively, of sizen. a 4 b denotes the
component-wise inequality, i.e., it meansa(i) ≤ b(i) ∀i. B(q), q ∈
[0 1] denotes the Bernoulli distribution with parameterq.

2. SIGNAL MODEL

In our setup, we have a population ofN items, out of whichK are
defective. LetG ⊂ [N ] denote the defective set, such that|G| = K.
We consider a non-adaptive group testing framework with random
pooling designs [1,7,17,18], where all the group tests are decided a
priori and the items to be pooled in a given test are chosen randomly.
The group tests are defined by a boolean matrix,X ∈ {0, 1}M×N ,
that assigns different items to theM group tests (pools). Thejth

pool tests the items corresponding to the columns with1 in the jth

row of X. We consider an i.i.d. random Bernoulli test matrix [17],
where eachXij ∼ B(p) for some0 < p < 1. Thus,M randomly
generated pools are specified. In the above,p is a design parameter
that controls the average number of items being tested in a single
group test. In particular, we choosep = α

K
, and a specific value of

α is chosen based on the analysis of different algorithms.1

When the tests are completely reliable, then the output of theM
tests is given by the boolean OR of the columns ofX corresponding

1The above parametrized form ofp is motivated by our earlier work [10],
where one of the conclusions, based on information theoretic arguments,
was that the optimal value ofp that minimizes the number of tests required
for “finding a non-defective subset” and “finding the defective set” are the
same. The formα/K approximates this optimal value very well and has
been widely used in literature [6, 7, 19] when probabilisticconstructions are
employed for designing the test matrices.

0

1 1

0
(1− q)

q

True test

output

Noisy test

output

Additive Noise
0

1 1

0

(1− u)

u

True test

matrix entry

Participating test

matrix entry

Dilution Noise

Fig. 1: Different types of noise in the group testing signal model.

to the defective setG. In group testing, two different noise models
are considered [6, 7, 17]: (a) Anadditivenoise model, where there
is a probability,q ∈ (0, 0.5], that the outcome of a group test con-
taining only non-defective items turns out to be positive (Fig. 1);
(b) A dilution model, where there is a probability,u ∈ (0, 0.5],
that a given item does not participate in a given group test (Fig. 1).
Let di ∈ {0, 1}M . Let di(j) ∼ B(1 − u) be chosen indepen-
dently for all j = 1, 2, . . . ,M and for all i = 1, 2, . . . , N . Let
Di , diag(di). Let “

∨

” denote the boolean OR operation. The
output vectory ∈ {0, 1}M can be represented as

y =
∨

i∈G

Dixi

∨

w, (1)

wherexi ∈ {0, 1}M is the ith column ofX, w ∈ {0, 1}M is the
additive noise with theith componentw(i) ∼ B(q). Given the test
output vector,y, our goals are the following:

(a) To find computationally efficient algorithms to identifyL non-
defective items, i.e., anL-sized subset belonging to[N ]\G.

(b) To analyze the performance of the proposed algorithms with
the objective of finding the number of tests required for non-
defective subset recovery with high probability of success.

As is common in the literature for defective set recovery in group
testing or sparse vector recovery in compressed sensing, there exist
two types of recovery results: (a)Non-uniform/Per-Instance recov-
ery results: These state that a randomly chosen test matrix leads
to successful non-defective subset recovery with high probability of
success for a given fixed defective set, and, (b)Uniform/Universal
recovery results: These state that a random draw of test matrix leads
to a successful non-defective subset recovery with high probability
of success for all possible defective sets. It is possible toeasily ex-
tend non-uniform results to the uniform case using union bounds.
Hence, we primarily focus on the non-uniform recovery results and
present the extension to the uniform case for one of the proposed
algorithms (see Corollary 1).

3. ALGORITHMS AND MAIN RESULTS

We now propose three algorithms for non-defective subset recovery.
Each algorithm takes the observed noisy output vectory ∈ {0, 1}M

and the test matrixX ∈ {0, 1}M×N as inputs, and outputs a set ofL
non-defective items,̂SL. The recovery is successful if the declared
set does not contain any defective item, i.e.,ŜL ∩ Sd = {∅}.

3.1. Row Based Algorithm

Our first algorithm to find non-defective items is also the simplest
and the most intuitive one. We make use of the basic fact of group
testing that, in the noiseless case, if the test outcome is negative, then
all the items being tested are non-defective.
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RoAl (Row based algorithm):

• Computez =
∑

j∈supp(yc) x
(r)
j , wherex(r)j is thejth row

of the test matrix.

• Order the entries ofz in descending order.

• Declare the items indexed by the topL entries as the non-
defective subset.

That is, declare theL items that have been tested most number
of times in pools with negative outcomes as non-defective items.
Recall that dilution noise can lead to a test containing defective
items in the pool being declared negative, resulting in a possible
mis-classification of the defective items. On the other hand, since
the algorithm only considers tests with negative outcomes,additive
noise does not lead to mis-classification of defective itemsas non-
defective. However, the additive noise does lead to an increased
number of tests as the algorithm might have to discard many ofthe
pools that contain only non-defective items.

Note that existing row based algorithms for finding the defective
set [1, 7] can be obtained as a special case ofRoAl by settingL =
N − K, i.e., by looking for all non-defective items. However, the
analysis in the past work does not quantify the impact of parameter
L, and that is our main goal here. We characterize the number of
tests,M , that are required to findL non-defective items with high
probability of success usingRoAl in the following theorem:

Theorem 1. (Non-Uniform recovery withRoAl) LetN , L,M , p, u
andq be as defined above. Defineγ0 , u

(1−(1−u)p)
. Letp be chosen

as α
K

withα = 1
3(1−u)

. There exist absolute constantsC0 > 0 such
that, if the number of tests are chosen as

M ≥
C0K(1− u)

(1− q)(1− γ0)2





log
[

K
(

N−K

L−1

)

]

(N −K) − (L− 1)



 , (2)

then for a given defective set there exist positive constants c0, c1,
such that the algorithmRoAl findsL non-defective items with prob-
ability exceeding1− exp(−Mc0)− exp(−Mc1).

The following corollary extends the above result to uniformre-
covery of a non-defective subset usingRoAl.

Corollary 1. (Uniform recovery withRoAl) Let p andγ0 be as de-
fined in Theorem 1. LetN0 , (N − K) − (L − 1). There exist
absolute constantsC0 > 0 andC1 > 0 such that, if the number of
tests are chosen as

M ≥ max







C0K(1− u)

(1− q)(1− γ0)2

log
[

N
(

N−K

L−1

)

]

N0
,
C1 log

(

N

K

)

(1− q)







,

then forany defective set there exist positive constantsc0, c1 > 0
such that theRoAl findsL non-defective items with probability ex-
ceeding1− exp(−Mc0)− exp(−Mc1).

3.2. Column Based Algorithm

The column based algorithm is based on matching the columns of
the test matrix with the outcome vector. A non-defective item does
not impact the output and hence the corresponding column in the test
matrix should be “uncorrelated” with the output. On the other hand,

“most” of the pools that test a defective item should test positive.
This forms the basis of distinguishing a defective item froma non-
defective one. The specific algorithm is as follows:

CoAl (Column based algorithm): Letψcb > 0 be some con-
stant.

• Compute T (i) = xT
i y

c − ψcb(x
T
i y) for each i =

1, . . . , N , wherexi is theith column ofX.

• SortT (i) in descending order.

• Declare the items indexed by topL entries as the non-
defective subset.

We note that, in contrast to the row based algorithm,CoAl works
with pools of both negative and positive test outcomes. In the above
algorithm, the constantψcb can be tuned for best performance. In
the sequel, we setψcb to be the value that optimizes an upper bound
on the number of tests, as presented in the following theorem:

Theorem 2. (Non-Uniform recovery withCoAl) LetN , L,M , p, u
andq be as defined above. LetΓ , (1 − q) (1− (1− u)p)K and
γ0 , u

(1−(1−u)p)
. Letp be chosen as 1

3(1−u)K
. Letψ0 , Γ(1+γ0)

2(1−p)

and chooseψcb = ψ0. There exists absolute constantC2 > 0 such
that, if the number of tests are chosen as

M ≥
C2K(1− u)

(1− γ0)2(1 + ψ0)(1− q)





log
[

K
(

N−K

L−1

)

]

(N −K) − (L− 1)



 , (3)

then for a given defective set there existsc0 > 0 such thatCoAl finds
L non-defective items with probability exceeding1− exp(−Mc0).

It is tempting to compare the performance ofRoAl andCoAl
by comparing required number of tests in (2) and (3), respectively.
However, such comparisons must be done with care, keeping inmind
that the required number of observations in (2) and (3) are based on
an upper bound on the average probability of error. The main objec-
tive of these results is to provide a guarantee on the number of tests
required for non-defective subset recovery and highlight the order-
wise dependence of the number of tests on the system parameters.
For the comparison of the relative performance of the algorithms,
we refer the reader to Section 4, where we present numerical results
obtained from simulations.

3.3. Linear program relaxation based algorithm

In this section, we consider linear program (LP) relaxations to the
non-defective subset recovery problem and identify the conditions
under which such LP relaxations lead to recovery of a non-defective
subset with high probability of success. LetYz be the set of all the
pools with negative outcomes andMz , |Yz|. LetX(Yz, :) denote
theMz × N sized sub-matrix containing only the rows indexed by
Yz. Define the following linear program, with optimization variables
z ∈ R

N andη ∈ R
Mz :

minimize
z,η

1TMz

η (4)

(LP0) subject to X(Yz, :)(1N − z)− η = 0Mz

, (5)

0N 4 z 4 1N , η < 0Mz

,

1TNz ≤ L.
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RoLpAl (LP relaxation with negative outcome pools only)

• Setup and solveLP0. Let ẑ be the solution ofLP0.

• Sort ẑ in descending order.

• Declare the items indexed by the topL entries as the non-
defective subset.

The above program relaxes the combinatorial problem of choos-
ing L out ofN items by allowing the boolean variables to acquire
“real” values between0 and1 as long as the constraints imposed by
negative pools, specified in (5), are met. Intuitively, the variablez
(or the variable[1N − z]) can be thought of as the confidence with
which an item is declared as non-defective (or defective). The con-
straint1TNz ≤ L forces the program to assign high values (close to1)
for “approximately” the topL entries only, which are then declared
as non-defective. The error analysis proceeds by first deriving suffi-
cient conditions for the non-defective subset recovery with RoLpAl
in terms of the dual variables ofLP0. We then derive the number of
tests required to satisfy these sufficiency conditions withhigh prob-
ability. We summarize the main result in the following theorem:

Theorem 3. (Non-Uniform recovery withRoLpAl ) LetN ,L,M , p,
u andq be as defined above. Letp be chosen as 1

3(1−u)K
. If the num-

ber of tests are chosen as (2), then for a given defective set,there ex-
ist positive constantsc0, c1, such thatRoLpAl findsL non-defective
items with probability exceeding1− exp(−Mc0)− exp(−Mc1).

4. SIMULATIONS

In this section, we investigate the empirical performance of the al-
gorithms for non-defective subset recovery proposed in this work.
In contrast to the previous section, where theoretical guarantees on
the number of tests were derived based on the analysis of the up-
per bounds on probability of error of these algorithms, herewe em-
pirically find the exact number of tests required to achieve agiven
performance level. Our setup is as follows. For a given set ofop-
erating parameters, i.e.,N , K, u, q andM , we choose a defective
setSd ⊂ [N ] randomly such that|Sd| = K, and generate the test
output vectory according to (1). We then recover a subset ofL

non-defective items using different recovery algorithms,i.e., RoAl,
CoAl andRoLpAl , and compare it with the defective set. This ex-
periment is repeated for different values ofM andL. For each trial,
the test matrixX is generated with random Bernoulli i.i.d. entries,
i.e.,Xij ∼ B(p), wherep is a design parameter. We choosep = 1

K

for the reasons mentioned earlier. Also, forCoAl, as suggested by
Theorem 2, we setψcb = Γ(1+γ0)

2(1−p)
. Unless otherwise stated, we set

N = 256, K = 16, u = 0.05, q = 0.1 and varyL andM .
Figure 2 shows the variation of the empirical probability oferror

with the number of tests, forL = 64 andL = 128. These curves
demonstrate the theoretically expected exponential behavior of the
average error rates and the similarity of the error rate performance
of RoAl andRoLpAl . We also note that, as expected, the algorithm
that use tests with both positive and negative outcomes perform bet-
ter than the algorithms that use only tests with negative outcomes.
Figure 3 presents the number of testsM required to achieve a target
error rate of10% as a function of thesizeof non-defective subset,L.
We note that, for small values ofL, all algorithms perform similarly,
but, in general,CoAl is the best performing algorithm across all val-
ues ofL. We also compare the algorithms proposed in this work with
the indirect approach of identifying the non-defective items by first
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gorithm CoAl performs the best among the ones considered. The
direct approach for finding non-defective items outperforms the in-
direct approach (“InDirAl”) [10].

identifying the defective items [10]. We first employ a defective set
recovery algorithm for identifying a defective set and thenchooseL
items uniformly at random from the complement set. This algorithm
is referred to as “InDirAl” algorithm in Figure 3. In particular, we
have used the “No-LiPo-” [7] for defective set identification. It can
be easily seen that the “direct” approach significantly outperforms
the “indirect” approach.

5. CONCLUSIONS

In this work, we proposed analytically tractable and computationally
efficient algorithms for identifying a non-defective subset of a given
size in a noisy non-adaptive group testing setup. We presented upper
bounds on the number of tests for guaranteed correct identification.
Also, it was found that the column based algorithmCoAl gave the
best performance for a wide range of values ofL, the size of non-
defective subset to be identified. In this work, we have considered a
randomized pooling strategy. An interesting problem for future work
is to devise deterministic group test constructions for thepurpose of
non-defective subset identification.
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