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ABSTRACT

A novel deterministic blind signal separation technique for
separating signals into rational functions is proposed, appli-
cable in various situations. This new technique is based on a
tensorization of the observed data matrix into a set of Löwner
matrices. The obtained tensor can then be decomposed with a
block tensor decomposition, resulting in a unique separation
into rational functions under mild conditions. This approach
provides a viable alternative to independent component ana-
lysis (ICA) in cases where the independence assumption is
not valid or where the sources can be modeled well by ratio-
nal functions, such as frequency spectra. In contrast to ICA,
this technique is deterministic and not based on statistics, and
therefore works well even with a small number of samples.

Index Terms— Blind Signal Separation, higher-order
tensor, Block Term Decomposition, rational functions, Inde-
pendent Component Analysis

1. INTRODUCTION

The basic problem of blind signal separation (BSS) consists
of the decomposition of the observed data matrix in an un-
known linear combination of unknown source signals. The
common way to solve BSS is through independent component
analysis (ICA), starting with a hypothesis of independence of
the source signals [1]. ICA has been widely applied, for ex-
ample in biomedical sciences, image processing, telecommu-
nications and finance [1, 2, 3, 4]. However, when the sources
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are not mutually statistically independent, one cannot justify
the use of ICA and must resort to other techniques.
In [5] a new deterministic framework of block component
analysis (BCA) was proposed. It is based on the use of the
block term decomposition [6], as a low multilinear rank is a
very natural structure for a lot of real-life data. In [7] a separa-
tion technique for exponential polynomials was given which
can be used for smooth and periodic functions. We present
a variant of this method for the separation of rational func-
tions using Löwner matrices. These matrices have mainly
been used for rational interpolation in system identification
[8]. The developed technique in this paper is able to open up
possibilities for applications in new domains.

A large class of functions and signals can be well approx-
imated by rational functions such as the Gaussian distribution
function or frequency spectra which represent a typical pole-
like behavior. In such cases the assumption of rationality is
not restrictive at all and very pertinent. Proof-of-concepts are
given with simulations in the last section, together with an
elaboration on possible applications.

1.1. Notation and basic definitions

Tensors can be seen as higher-order generalizations of vec-
tors (denoted by a bold, lowercase letter, e.g., a) and matrices
(denoted by a bold, uppercase letter, e.g., A). We denote a
general N -th order tensor of size I1 × I2 × · · · × IN by a
calligraphic letter as A ∈ KI1×I2×···×IN (K stands for R or
C); it is a multi-way array with numerical values ai1i2···iN =
A(i1, i2, . . . , iN ). Two main products are used in this pa-
per. The mode-n tensor–matrix product between a tensor
A ∈ KI1×I2×···×IN and a matrix B ∈ KJ×In is defined as

(A ·n B)i1···in−1jin+1···iN =

In∑
in=1

ai1i2···iN bjin .

The outer product of two tensors A ∈ KI1×I2×···×IN and
B ∈ KJ1×J2×···×JM is given as

(A ⊗ B)i1i2···iN j1j2···jM = ai1i2···iN bj1j2···jM .

4145978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



T =

c1

A1

B1

+ · · · +

cR

AR

BR

Fig. 1. A block term decomposition in rank-(Lr, Lr, 1) terms

The Frobenius norm of a tensor A is denoted by ‖A‖, being
the root of the sum of the squares of the tensor entries.

1.2. Basic tensor decompositions

A polyadic decomposition (PD) of a tensor T is given by a
sum of R rank-1 tensors:

T =
∑R

r=1
a(1)r ⊗ a(2)r ⊗ · · ·⊗ a(N)

r ,
r
A(1),A(2), ... ,A(N)

z

It is called canonical (CPD) when R is the minimum num-
ber of terms for the decomposition to be exact, and this R is
defined as the rank of the tensor. The mode-n rank of a ten-
sor T is the dimension of the subspace spanned by its mode-n
vectors. These vectors are constructed by fixing all but one in-
dex, e.g., a = A(i1, . . . , in−1, :, in+1, . . . , iN ). If the mode-
1 rank, mode-2 rank and mode-3 rank of a third-order ten-
sor are equal to L, M and N respectively, it is said to have
trilinear rank (L,M,N). This becomes the multilinear rank
when generalized to arbitrary order. The proposed technique
in this paper is based on a specific instance of the general
rank-(Lr,Mr, Nr) block term decomposition (BTD), namely
the decomposition of a third order tensor T ∈ KI1×I2×I3 into
a sum of rank-(Lr, Lr, 1) terms:

T =
∑R

r=1
Er ⊗ cr, (1)

with the matrix Er ∈ KI1×I2 having rank Lr and vector cr ∈
KI3 being nonzero. We can verify that the multilinear rank of
term r is (Lr, Lr, 1), while each Er can be factorized to give

T =
∑R

r=1
(ArB

T
r) ⊗ cr, (2)

with Ar ∈ KI1×Lr and Br ∈ KI2×Lr ; illustrated in Figure 1.
One main feature of tensor decompositions is that they

are unique under mild conditions. Results for the CPD can be
found in [9, 10, 11] and references therein, while [6, 7] dis-
cuss uniqueness for the general BTD and the rank-(Lr, Lr, 1)
BTD, respectively. These results can be used to deliver a
unique separation of a mixture of rational sources. For a
more elaborate survey on tensor decompositions we refer to
[12, 13]. An example of the use of the rank-(Lr, Lr, 1) BTD
is found in [?].

2. LÖWNER-BASED BLIND SIGNAL SEPARATION

We propose a new technique for blind signal separation where
the source signals are represented as rational functions. We

first briefly review Löwner matrices and discuss their appli-
cation to BSS. We then introduce the tensorization, decom-
position and reconstruction, in the spirit of the technique for
separating exponential polynomials in [7].

2.1. Löwner matrices

A Löwner matrix is a type of low displacement rank matrix,
being a matrix depending on only O(n) parameters [14]:

Definition 1 (Löwner). Given a function f(t) sampled
on N different points ti. We partition the point set T =
{t1, t2, . . . , tN} into two point sets X = {x1, x2, . . . , xα}
and Y = {y1, y2, . . . , yN−α}, and define the Löwner matrix
L with

li,j =
f(xi)− f(yj)

xi − yj
. (3)

If N is even and α = N/2, then L is square. The following
theorem gives the connection between Löwner matrices and
rational functions [15], with the degree of a rational function
defined as the maximum of the degrees of the polynomial in
its numerator and the polynomial in its denominator:

Theorem 1. Given a Löwner matrix L of size I×J associated
to a function f(t) on point set T with N = I + J . If f(t) is
a rational function with degree δ and if I, J ≥ δ, then L has
rank δ.

The proof can be found in [16, 17], however it is easy to verify
for δ = 1: substituting f(t) = γ t+at+b into (3) gives li,j =

γ(β −α) · 1
xi+β

· 1
yj+β

which is a rank-one matrix. A further
detailed discussion on Löwner matrices is found in [18].

2.2. Blind Signal Separation

We consider the following data model in linear blind signal
separation (BSS):

X = M · S+N, (4)

with X ∈ KK×N containing the observed data withK known
sensor signals, S ∈ KR×N containing the R unknown source
signals, M ∈ KK×R the mixing matrix and N ∈ KK×N

the additive noise. The general goal in BSS is to recover the
unknown sources in S and/or the unknown mixing vectors in
M, given only the sensor data X. Let us now assume that
the sources are rational functions and describe a technique to
obtain a unique separation of a linear mixture of them. Each
row in S is represented by a rational function of degree Lr.
We assume single poles for simplicity (coinciding poles can
be used too) and use a partial fraction representation:

sr(t) =
∑Lr

lr=1

αlr,r
t+ βlr,r

. (5)

We assume that the numerator degree is strictly smaller than
the denominator degree. Otherwise, while Theorem 1 would
still hold, the decomposition (explained in the next section)
would not be unique.
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2.3. Löwnerization and decomposition

Let us now describe the technique to separate the mixed ra-
tional functions. Each row of X is transformed into a (I × J)
Löwner matrix with I+J = N and then stacked into a tensor
X . We call this transformation a Löwnerization and the result-
ing tensor X with size I×J ×K is called the Löwner tensor.
The BSS-model in (4) is linear, so the K Löwner matrices of
the sensors become linear combinations of the Löwner repre-
sentations of the sources. One can write

X =
∑R

r=1
Lr ⊗ mr,

in which each Lr is the Löwner matrix for source r and
each mr is the mixing vector for source r. As described
above, the matrices Lr have low rank if the associated func-
tions are rational functions of limited degree Lr. We assume
min(I, J) ≥ maxr Lr. Factorizing the matrices Lr of ranks
Lr into ArB

T
r for 1 ≤ r ≤ R , we obtain the following

decomposition of X :

X =
∑R

r=1
(ArB

T
r) ⊗ mr, (6)

which is precisely the decomposition in rank-(Lr, Lr, 1)
terms from equations (1) and (2). The partial fractions from
(5) reappear in Ar and Br, and one can prove that the decom-
position in (6) is unique under reasonably mild conditions [7],
even for coinciding poles. In applications, the block term de-
composition of the tensorized dataset can be carried out for
example with Tensorlab [19].

2.4. Reconstruction of the sources

From the decomposition one directly recovers an estimate of
M in the third mode (called M̂). In order to also recover S,
one can invert M̂ to obtain Ŝ = M̂−1MS+ M̂−1N.

We can also use the mode-1 and mode-2 information from
the decomposition, i.e., the reconstructed L̂r. In [7] it was
shown how it is possible to average along the antidiagonals
in the Hankel matrices to recover the exponential polyno-
mial source signals. In the case of Löwner matrices, we can
project the reconstructed L̂r onto the nearest Löwner matrix
in a least-squares sense. From equation (3), changing f into
sr and L into L̂r, one obtains a linear system with unknown
sr which can be solved in a least-squares sense:

sr = argmin
sr

1

2

∥∥∥vec(L̂r)− Fsr

∥∥∥2 for 1 ≤ r ≤ R,

in which F ∈ KIJ×N is constructed from equation (3). With
the point set T = {x1, y1, x2, y2} for example, the linear sys-
tem becomes the following:
(L̂r)1,1
(L̂r)2,1
(L̂r)1,2
(L̂r)2,2

 =


1

(x1−y1)
−1

(x1−y1)
0 0

0 −1
(x2−y1)

1
(x2−y1)

0
1

x1−y2
0 0 −1

x1−y2

0 0 1
x2−y2

−1
x2−y2


sr(x1)
sr(y1)
sr(x2)
sr(y2)



The reconstructed signals are determined up to a permu-
tation, scaling and a constant vector µ. The latter can be re-
covered with the following optimization:

µ = argmin
µ

1

2

∥∥∥X− M̂
(
Ŝ− µeT

)∥∥∥2
with e = [1, . . . , 1], which again yields a linear system of
equations. Note that this solution method enables the recov-
ery of sources in the case of less sensors than sources, while
the first solution method is not applicable when K < R or
when the mixing matrix does not have full column rank.

3. RESULTS AND DISCUSSION

3.1. Simulations

We provide two experiments. Each signal is sampled in t ∈
[0, 1] with N = 200 data points. The first experiment con-
siders the separation of two rational functions without mea-
surement noise. Each function has six complex conjugated
pole pairs with the real parts in [0, 1], see Figure 2, and is
thus of degree 12. The mixing matrix M = [1, 0.7; 0.7, 1]
is used. For the second experiment, we show that Gaussian
signals can be well approximated. We separate three Gaus-
sians mixed with M = [1, 0.5, 0.3; 0.5, 0.9, 0.2; 0.4, 0.5, 0.7].
The means of the Gaussian functions are 0.3, 0.5 and 0.8 and
the variances are 0.01, 0.01 and 0.015. The observations are
perturbed by noise to obtain a signal-to-noise ratio of 25 dB.

The technique is applied using a Löwnerization with
an interleaved partitioning of the sample points, i.e. T =
{x1, y1, x2, y2, . . . , x100, y100}. The tensor is decomposed
using btd nls from Tensorlab. For the first experiment,
L1 = L2 = 12 is used. For the second experiment,
L1 = L2 = L3 = 2 is used, i.e., the Gaussians are ap-
proximated by rational functions of degree 2. In practi-
cal cases, a trial-and-error method can be used to deduct
Lr, knowing that the multilinear rank of X is bounded by
(
∑R
r=1 Lr,

∑R
r=1 Lr, 1); the choice of Lr need not be very

precise [7]. The sources are found from the reconstructed
Lr (the second method in subsection 2.4). The sources can
only be uniquely reconstructed up to scaling and permutation,
being the standard indeterminacies in BSS. In the first exper-
iment a perfect reconstruction is found, while in the second,
we have a relative error on the mixing matrix (defined as the
relative difference in Frobenius norm after optimal scaling
and permutation) of 0.1491; see Figures 2 and 3. Note that
ICA does not work for these experiments: FastICA returns a
relative error of 0.35 and 0.68, respectively. We also include
an experiment in Figure 4 for different signal-to-noise-ratios
with Gaussian i.i.d. noise for a mixture of two rational sources
with poles 0.2 ± 0.05j and 0.8 ± 0.05j, respectively. The
median across 100 experiments of the relative difference in
Frobenius norm between the real and reconstructed M and S
is shown.
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Ŝ

(c) The reconstructed sources Ŝ

Fig. 2. Example of a separation of a mixture of two rational functions, determined up to scaling and permutation
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Fig. 3. Example of separating three Gaussian functions, while approximating them by rational functions of degree 2
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Fig. 4. The relative error for the mixing matrix ( ) and the
source signals ( ). It is defined as the relative difference in
Frobenius norm after optimal scaling and permutation.

Note that this technique also works for K > R and even
for K < R. In the former, a preprocessing step using SVD
can be used [7]. In the latter, uniqueness ensures a correct
solution even when there are less sensors than sources.

3.2. Application examples

We highlight a specific application in the domain of chemo-
metrics. In excitation-emission spectroscopy [20, 21], dif-
ferent chemical components (e.g. tyrosine, tryptophane and
phenylalanine) contribute to the measurements in a linear
combination due to Beer-Lambert’s law. Their excitation and
emission spectra can be separated from the spectroscopy mea-
surements with a canonical polyadic decomposition based on
many different samples (for different concentrations) stacked
into a tensor. The Löwnerization technique can reduce the
number of samples needed to only a single sample as the
excitation (or emission) spectra can be seen as the sources of
a blind signal separation problem and well approximated by
rational functions. Second, the technique enables the analysis
when one only has a single sample at his or her disposal.

As the example indicates, rational functions are perfectly

suited to model frequency spectra because of their smooth
character and pole-like behavior. Biomedical signals can be
processed too, as electrocardiography signals for example
contain a low intrinsic structure. The separation of mother
and fetal electrocardiograms [22] could then be done with
Löwnerization.

3.3. Discussion and future research

In this paper we limited the discussion to single poles. Ra-
tional functions with coinciding poles can be separated too,
while uniqueness still holds. A decomposition equivalent to
the Vandermonde decomposition of Hankel matrices [23] is
expected to be possible too for Löwner matrices. Our tech-
nique has similarities to the one described in [7]; future re-
search is needed to extract the relations between the different
techniques (a major advantage of our technique is that it does
not need equidistant sample points in contrast to the technique
in [7]) and to reveal other deterministic BSS-algorithms appli-
cable as valid alternatives to the ICA-algorithm.

4. CONCLUSION

We have proposed a technique for separating a mixture into
rational source functions based on the Löwnerization of the
observed data matrix, as a new method for blind signal separa-
tion. This is an alternative to the popular independent compo-
nent analysis technique when mutual statistical independence
in the sources is not present or when the sources are smooth
and have a pole-like behavior such as frequency spectra. The
technique makes use of the tensor block term decomposition
of which uniqueness results provide unique reconstructability
of the rational sources. This deterministic technique works
well even with a limited number of samples. Derivation de-
tails and real-life illustrations will be given in a full paper.
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