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ABSTRACT

This paper presents a design method of critically sampled graph
wavelet transforms (CSGWTs) utilizing real-valued biorthogonal
linear-phase wavelets for regular signals. Their filter characteristics
are equivalent to those of biorthogonal linear-phase wavelets and can
be expressed by real-valued closed-form with the sum of sinusoidal
waves in the graph spectral domain. The proposed CSGWTs satisfy
the perfect reconstruction condition for graph signals. Since the
proposed filters are smooth functions, they are well-behaved even if
we use a lower-order polynomial approximation. The performance
of the proposed CSGWTs is evaluated by comparison with existing
CSGWTs.

Index Terms— Graph signal processing, graph wavelets, graph
filter banks, discrete wavelet transform

1. INTRODUCTION

Graph signal processing has been a hot topic in signal and infor-
mation processing for both theoretical and practical reasons [1–18].
From the theoretical viewpoint, there are close relationships among
signal processing, information theory [19], (spectral) graph theory
[20], and computational harmonic analysis [4, 21]. From the prac-
tical viewpoint, there is an extensive amount of data with irregular
structures, e.g., sensor and brain networks [6, 10], traffic [8], learn-
ing [5, 22], and images [23–26].

The design of wavelets and filter banks is one of key issues in
graph signal processing as well as regular signal processing. There
are several kernels that form perfect reconstruction (PR) graph filter
banks [4, 10, 12]. Although many of them are undecimated trans-
forms, graph-based filter banks with downsampling operation have
also been developed [2, 3, 15–17]. Since the downsampling effect of
graph signals causes spectral folding phenomenon, which is similar
to aliasing of regular signal processing, the filter banks are designed
for bipartite graphs. The critically sampled graph wavelet transform
(CSGWT) must satisfy the PR condition like that for regular signals.

The discrete wavelet transforms (DWTs) are very useful tools
for regular signal processing [27–29]. One of widely known and
commonly used DWTs is real-valued biorthogonal linear-phase
PR wavelet transform (hereafter, “DWT”). Cohen-Daubechies-
Feauveau (CDF) DWT [30] is highly effective in compression and
its 9/7-tap and 5/3-tap versions are used in JPEG2000 standard [31].

In this paper, CSGWTs derived from the DWTs are proposed. In
our recent paper [32], we proposed M -channel filter banks derived
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from real-valued linear-phase PR FIR filter banks. They are undeci-
mated transforms, whereas this paper provides its extension, i.e., the
graph wavelet filter banks with downsampling. We can easily obtain
a wavelet transform having a desired characteristic in the graph spec-
tral domain from the filter coefficients of the DWT. Their character-
istics can be defined by real-valued closed-form expressions, so they
are smooth functions. It is revealed that the CSGWTs derived from
the DWTs also satisfy the PR condition for graph signals. We show
design examples of the CSGWTs utilizing CDF DWTs. They are
close to orthogonal and have high reconstruction SNRs even if we
use a lower-order shifted Chebyshev polynomial approximation [4].
The performance of the proposed CSGWTs is validated in non-linear
approximation experiments of signals on graphs.

The remaining of this paper is organized as follows. Prelimi-
naries are summarized in the rest of this section. Section 2 gives
the existing critically sampled wavelet transforms for graph signals
and for regular signals. Section 3 presents the design method of the
CSGWTs derived from the DWTs and clarifies that the proposed
CSGWTs satisfy the PR condition for graph signals. The design
examples and experimental results are shown in Section 4. Finally,
Section 5 concludes the paper.

1.1. Preliminaries

A graph G is represented as G = {V, E}, where V and E denote sets
of nodes and edges, respectively. The graph signal is defined as f ∈
RN . We will only consider a finite undirected graph with no loops or
multiple edges. The number of nodes is N = |V|, unless otherwise
specified. The (m,n)-th element of the adjacency matrix A is the
weight of the edge between m and n if m and n are connected, and
0 otherwise. The degree matrix D is a diagonal matrix and its m-
th diagonal element is dmm =

∑
n amn. The unnormalized graph

Laplacian matrix (GLM) is defined as L := D − A and the sym-
metric normalized GLM is L := D−1/2LD−1/2. The symmetric
normalized GLM has the property that its eigenvalues are within the
interval [0, 2], and we will use L in this paper. The eigenvalues of
L are λi and ordered as: 0 = λ0 < λ1 ≤ λ2 . . . ≤ λN−1 ≤ 2
without loss of generality. The eigenvector uλi corresponds to λi
and satisfies Luλi = λiuλi . The entire spectrum of G is defined by
σ(L) := {λ0, . . . , λN−1}. The projection matrix for the eigenspace
Vλi is Pλi =

∑
λ=λi

uλu
T
λ where uTλ is the transpose of uλ. Let

H(λ) be the spectral kernel of a filter H defined on the real line
λ ∈ [0, 2]. The spectral domain filter can be written as

H = H(L) =
∑

λ∈σ(L)

H(λ)Pλ. (1)

The graph spectral domain filtering can be simply denoted as Hf .
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Fig. 1. Two-channel critically sampled graph wavelet transform.

2. CRITICALLY SAMPLED WAVELET TRANSFORMS

2.1. Two-Channel Wavelet Transforms for Graph Signals

A bipartite graph, whose nodes can be decomposed into two disjoint
sets L and H such that every edge connects a node in L to one in
H , can be represented as G = {L,H, E}. The downsampling func-
tion βH of a bipartite graph is defined as βH(m) = +1 if node
m ∈ H and βH(m) = −1 if node m ∈ L. The diagonal downsam-
pling matrix is JH = diag{βH(m)} and satisfies J = JH = −JL.
The downsampling-then-upsampling operation can be defined as fol-
lows:

Ddu,L =
1

2
(IN + JL), Ddu,H =

1

2
(IN + JH), (2)

where IN is an N ×N identity matrix.
The CSGWTs decompose N input signals into |L| lowpass co-

efficients and |H| highpass coefficients, where |L| + |H| = N , as
illustrated in Fig. 1. Since any arbitrary graph can be decomposed
into K bipartite subgraphs, GWTs for bipartite graphs can be ap-
plied to any non-bipartite graphs [2, 33]. The PR condition of the
CSGWTs can be expressed as

G0(λ)H0(λ) +G1(λ)H1(λ) = 2, (3)
−G0(λ)H0(2− λ) +G1(λ)H1(2− λ) = 0. (4)

Additionally, the orthogonal transform, graph-QMF [2], has the or-
thogonality conditionH2

0 (λ)+H
2
0 (2−λ) = c2. The filters are cho-

sen in a way that satisfiesH1(λ) = H0(2−λ),H0(λ) = G0(λ) and
H1(λ) = G1(λ). Unfortunately, filters satisfying these conditions
are not compact support. That is, if the graph-QMF were forced to
be compact support, it would suffer from a loss of orthogonality and
a reconstruction error. On the other hand, graphBior [3] relaxes the
orthogonal condition of the graph-QMF. It satisfies the PR condi-
tion and has compact support because it uses an analogous approach
to CDF construction for regular signals [30], i.e., it is based on the
spectral factorizations of a maximally flat filter pair.

2.2. Two-Channel DWT for Regular Signals

In the z-domain, the PR condition of the two-channel DWT can be
expressed as [28]

G0(z)H0(z) +G1(z)H1(z) = 2z−l, (5)
G0(z)H0(−z) +G1(z)H1(−z) = 0, (6)

where Hi(z) =
∑Li−1
m=0 hi(m)z−m, and L0 and L1 are the filter

lengths of the lowpass filter H0(z) and the highpass filter H1(z),
respectively. For aliasing cancellation, the synthesis filters are de-
termined from analysis filters: G0(z) = H1(−z) and G1(z) =
−H0(−z). For PR, (5) is rewritten as P0(z) − P0(−z) = 2z−l

where P0(z) = G0(z)H0(z) and l = L0+L1−2
2

. As a result, the
design problem boils down to construct a half band filter P (z) =
zlP0(z) and obtain lowpass filters by spectral factorization of P0(z).

Proposition 1. [34, Proposition 3.3], [28, Theorem 4.3] In two-
channel biorthogonal linear-phase wavelet transforms, the filter
lengths are all odd or all even. The analysis filters H0(z) and
H1(z) should be

a) Both symmetric of odd length, differing by an odd multiple of
2.

b) One symmetric and the other antisymmetric1, of even length,
and are equal or differ by an even multiple of 2.

3. CSGWT DERIVED FROM DWT

Wavelets in the graph spectral domain should be well-defined func-
tions that cover the entire spectral range λ ∈ [0, 2], and be real-
valued functions. We used the discrete-time Fourier transform of the
DWTs to construct the CSGWTs that have these properties.

3.1. Analysis Filters

In the frequency domain ω ∈ [0, π], the filter characteristics are for-
mulated using the discrete-time Fourier transform. The transform is
represented as Hi(ω) =

∑Li−1
m=0 hi(m)e−jωm. Because of sym-

metricity of filter coefficients, the frequency response of the analysis
filters corresponding to the odd length DWT can be represented as
the following form after elementary calculations:

Hi(ω)=e
−j Li−1

2
ω

2(Li−3)/2∑
m=0

hi(m)cos

(
bi,m
2
ω

)
+hi

(
Li − 1

2

) ,

(7)
where bi,m = Li − (2m + 1) and i = 0, 1. Similarly, the fre-
quency response of the analysis filters corresponding to the even
length DWT are

H0(ω) = 2e−j
L0−1

2
ω

(L0−2)/2∑
m=0

h0(m) cos

(
b0,m
2
ω

)
,

H1(ω) = 2je−j
L1−1

2
ω

(L1−2)/2∑
m=0

h1(m) sin

(
b1,m
2
ω

)
.

(8)

From the above equations, the modulated frequency characteristics

Ĥi(ω) = ej
Li−1

2
ωHi(ω) become imaginary (for H1(ω) of (8)) or

real (otherwise) functions that cover ω ∈ [0, π].
By transforming the variables ω ∈ [0, π] → λ ∈ [0, 2] and

multiplying Ĥ1(ω) of the even length DWT by−j, Ĥi(ω) becomes
a real-valued function that covers the entire graph frequency range.
As a result, the closed form of the analysis filters of the CSGWT
derived from the odd length DWT are

Hi(λ) = 2

(Li−3)/2∑
m=0

hi(m) cos

(
bi,mπ

4
λ

)
+ hi

(
Li − 1

2

)
, (9)

and those derived from the even length DWT are

H0(λ) = 2

(L0−2)/2∑
m=0

h0(m) cos

(
b0,mπ

4
λ

)
,

H1(λ) = 2

(L1−2)/2∑
m=0

h1(m) sin

(
b1,mπ

4
λ

)
.

(10)

1Generally, the lowpass filters is symmetric and highpass filters is anti-
symmetric.
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3.2. Synthesis Filters

In the z-domain, the synthesis filters of the DWT are expressed as

G0(z) = H1(−z) =
L1−1∑
m=0

(−1)mh1(m)z−m,

G1(z) = −H0(−z) = −
L0−1∑
m=0

(−1)mh0(m)z−m.

(11)

The synthesis filters of the CSGWT derived from the odd length
DWT are constructed by the same way as the analysis filters. They
are represented as

G0(λ) =

2

(L1−3)/2∑
m=0

(−1)mh1(m) cos

(
b1,mπ

4
λ

)
+ (−1)

L1−1
2 h1

(
L1− 1

2

)
,

G1(λ) =

−2
(L0−3)/2∑
m=0

(−1)mh0(m) cos

(
b0,mπ

4
λ

)
−(−1)

L0−1
2 h0

(
L0− 1

2

)
.

(12)

The synthesis filters derived from the even length DWT are obtained
by constructing G0(λ) and G1(λ) from a similar derivation as the
analysis filters, and multiplying G1(λ) by −1. As a result, they are
represented as

G0(λ) = 2

(L1−2)/2∑
m=0

(−1)mh1(m) cos

(
b1,mπ

4
λ

)
,

G1(λ) = 2

(L0−2)/2∑
m=0

(−1)mh0(m) sin

(
b0,mπ

4
λ

)
.

(13)

Proposition 2. The CSGWT derived from the DWT satisfies the PR
condition in (3) and (4).

Proof. Case 1: L0 and L1 are both odd. By multiplying both sides

by ej
L0+L1−2

2
ω , (5) in the frequency domain ω ∈ [0, π] can be

rewritten as

Ĝ0(ω)Ĥ0(ω) + Ĝ1(ω)Ĥ1(ω) = 2. (14)

Then, the graph filters derived by transforming the variable ω ∈
[0, π]→ λ ∈ [0, 2] satisfy the following relationship:

G0(λ)H0(λ) +G1(λ)H1(λ) = 2. (15)

The lowpass filter G0(λ) in (12) can be rewritten as

G0(λ) =

(−1)
L1−1

2

2

(L1−3)/2∑
m=0

h1(m) cos

(
b1,mπ

4
(2− λ)

)
+h1

(
L1 − 1

2

).
Let us define n0, n1 ∈ R. Here, G0(λ) = H1(2 − λ) for L1 =
4n1 + 1 and G0(λ) = −H1(2 − λ) for L1 = 4n1 + 3. With a
similar derivation, it can be seen that G1(λ) = −H0(2 − λ) for
L0 = 4n0 + 1 and G1(λ) = H0(2 − λ) for L0 = 4n0 + 3. From
Proposition 1, the possible forms of the filter lengths are {L0 =
4n0 + 1, L1 = 4n1 + 3}, or {L0 = 4n0 + 3, L1 = 4n1 + 1}. In

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.5

1

1.5

2

2.5

λ

(a) graphBior(6, 6) [3]
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(b) CDF 9/7-GWT
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(c) CDF 5/3-GWT
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Fig. 2. Analysis filters of CSGWTs. The black line indicates
1
2
(H2

0 (λ) +H2
1 (λ)).

Table 1. Performance Comparison (Average of 20 random bipartite
graphs with N = 500): Orthogonality θ and reconstruction SNR
(dB) with filter length p
p graphQMF graphBior CDF 9/7-GWT CDF 5/3-GWT

θ SNR θ SNR θ SNR θ SNR
6 0.92 21.02 0.85 298.42 0.94 46.60 0.90 77.84
8 0.96 32.04 0.87 290.77 0.95 66.63 0.90 106.74
10 0.98 54.25 0.86 272.55 0.95 87.08 0.90 141.30
12 0.98 38.19 0.84 261.11 0.95 111.77 0.90 178.82
14 0.98 33.97 0.89 241.17 0.95 137.86 0.90 217.91
16 0.99 39.94 0.90 228.51 0.95 167.56 0.90 259.94
18 0.99 49.82 0.91 221.63 0.95 198.28 0.90 291.63
20 0.99 53.94 0.91 192.90 0.95 231.17 0.90 289.87

both cases, the CSGWT derived from the odd length DWT satisfies
the PR condition in (3) and cancels the spectral folding phenomenon
in (4).

Case 2: L0 and L1 are both even. Similar to the odd length
case, (5) can be modulated as

Ĝ0(ω)Ĥ0(ω) + (jĜ1(ω))(−jĤ1(ω)) = 2. (16)

Then, the graph filters satisfy

G0(λ)H0(λ) +G1(λ)H1(λ) = 2. (17)

The synthesis filters in (12) are rewritten as

G0(λ) = 2

(L1−2)/2∑
m=0

(−1)
L1−2

2 h1(m) sin

(
b1,mπ

4
(2− λ)

)
,

G1(λ) = 2

(L0−2)/2∑
m=0

(−1)
L0−2

2 h0(m) cos

(
b0,mπ

4
(2− λ)

)
.

(18)

It can be seen that the synthesis filters are G0(λ) = −H1(2 − λ)
and G1(λ) = −H0(2− λ) if {L0 = 4n0, L1 = 4n1}, or G0(λ) =
H1(2 − λ) and G1(λ) = H0(2 − λ) if {L0 = 4n0 + 2, L1 =
4n1+2}. From the above, the CSGWT derived from the even length
DWT also satisfies (3) and (4).
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(b) Minnesota Traffic Graph

Fig. 3. Input signals. We used the MATLAB code of Shuman et
al. [12] for the signal on the Minnesota Traffic Graph.

4. DESIGN EXAMPLES AND EXPERIMENTAL RESULTS

4.1. Design Examples

Figure 2 shows examples of the CDF-based CSGWT (CDF-GWT).
They are obtained by substituting the filter coefficients hi(m), m =
0, 1, 2, . . . , Li−1 of the CDF DWTs [30] into (9) (for the CDF 9/7-
GWT and the CDF 5/3-GWT) and (10) (for the CDF 4/4-GWT). For
comparison, the frequency response of graphBior(6, 6) wavelet filter
bank [3] is also shown. It can be seen the filter characteristics of the
CDF-GWTs are equivalent to those of the CDF wavelets for regular
signals.

4.2. Performance Comparison

If the spectral filter is a k degree polynomial, it is k-hop localized in
the vertex domain [4] and does not require full eigendecomposition
of a given normalized GLM L for graph spectral filtering. Therefore,
the p-th order Chebyshev polynomial approximation [4] is used for
the graphQMF and the proposed CSGWTs.

The practical performance of the proposed CSGWTs are com-
pared with the graphQMF (Meyer kernel) [2] and the graphBior [3].
The orthogonality and reconstruction error are summarized in Table
1. The orthogonality θ is defined as θ = 1 − |A−B||A+B| where A =√

infλ
1
2
(H2

0 (λ) +H2
1 (λ)) and B =

√
supλ

1
2
(H2

0 (λ) +H2
1 (λ))

[3]. Because the filter kernels of the graphBior are defined by poly-
nomials, the graphBior does not need the polynomial approxima-
tion and has high SNR (> 100dB) regardless of the filter lengths.
However, its orthogonality is relatively low, especially for shorter
filter lengths. The graphQMF is almost orthogonal, but its SNRs
are very low even when p = 20 due to polynomial approximation.
Although the polynomial approximation is also used for the CDF-
GWTs, the CDF-GWTs can reproduce the ideal filter characteris-
tics and show high orthogonality as well as high SNRs even with
shorter filter lengths, since the CDF-GWTs covers the entire graph
frequency range with one series of sinusoidal waves as shown in
(9). It is worth noting that, in our approach, any biorthogonal linear-
phase DWTs for regular signals are completely reusable for graph
signals, and its filter characteristics in the graph spectral domain are
easily estimated from its frequency domain counterpart.

4.3. Non-linear Approximation

The CDF 9/7 and 5/3-based CSGWTs are compared with the CDF
9/7 DWT for regular signals, the graphQMF [2], and the graph-
Bior(5, 5) [3] in the non-linear approximation of image and graph
signal. Figure 3 shows the original signals of Coins image and Min-
nesota Traffic Graph. All graph-based transforms are with filter
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(a) Coins image
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Fig. 4. PSNR and SNR comparisons.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Zoomed in Coins images reconstructed from all lowpass
coefficients and 3% of highpass coefficients. (a) Original image.
(b) CDF 9/7 DWT(27.16dB). (c) graphQMF (27.92dB). (d) graph-
Bior (29.79dB). (e) CDF 9/7-GWT (30.88dB). (f) CDF 5/3-GWT
(30.85dB).

length p = 10, and use edge-aware image graphs for Coins im-
age [35]. After four-level (for Coins image) or one-level2 (for the
Minnesota Traffic Graph) decomposition, the input signal is recon-
structed from all lowpass coefficients and some fraction of highpass
coefficients. Figure 4 shows PSNR and SNR plotted against the frac-
tion of highpass coefficients. In both signals, the proposed CSGWTs
always outperform the other methods. Figure 5 shows the recon-
structed Coins images. We can see that the CDF-GWTs suppress
ringing artifacts compared to the other methods.

5. CONCLUSION

We proposed the CSGWTs derived from the DWTs for regular sig-
nals. The CSGWTs always satisfy the PR condition. They have high
orthogonality and low reconstruction error even when we use lower-
order Chebyshev approximations. They also outperform the existing
CSGWTs in the non-linear approximation experiments.

2Since the edge-aware image graphs and Minnesota Traffic Graph are
four-colorable and three-colorable graphs, respectively, they can be decom-
posed into two bipartite subgraphs and are applied two-dimensional CS-
GWTs [2, 33].
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