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ABSTRACT

In this paper we present a Bayesian method for parameter
estimation in linear Jump-Langevin systems, i.e. systems
driven by a linear, mean-reverting jump-diffusion trend pro-
cess. Such models have been applied successfully to trend
following in finance, in order to develop momentum-based
trading strategies. Parameter estimation is based around a
reversible-jump MCMC method for jump-time inference.
Parameter estimation is demonstrated on both synthetic and
financial time series, and estimated parameters are compared
with ad hocparameter estimates used in earlier work.

Index Terms— Jump-diffusion, parameter estimation,
trend following, Bayesian, finance

1. INTRODUCTION

Momentum effects have been found to exist in numerous fin-
ancial markets, including those for commodities [1], foreign
exchange [2] and equities [3]. This is apparently in defiance
of the Efficient Market Hypothesisof [4], which states that
prices should not be predictable from analysing their past his-
tory. However, momentum effects appear to persist [5] and
continue to be exploited, in spite of reports of their declining
strength [6] or illusory nature [7]. Proposed explanations of
these effects mostly divide into two groups: herding effects,
whereby investors all buy similar assets (e.g. ones that have
recently performed well) [8] [9], and delayed market reac-
tion to news or changes in fundamentals (i.e. over multiple
trading periods), meaning that the effect of incorporating new
information in asset prices is not instantaneous [10] [5].

In order to exploit momentum effects for trading, it is
necessary to identify trends that are present in asset prices.
Many strategies exist for this, including ones as simple as
buying shares that performed well in previous periods, which
have been shown to be effective under certain circumstances
[11]. However, for momentum trading, it is equally important
to identify points at which trends change [12] since at those
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points a momentum strategy following a trend can make sig-
nificant losses if it is unable to identify the change quickly
and alter its position accordingly.

In [13], a model-based tracking algorithm was proposed
to infer price momentum, using a particle filter for on-line
trend inference. In order to cope with rapidly changing trends,
the trend process was modelled as a jump-diffusion process
allowing sudden trend changes to be modelled. Details of the
model are given in section 2. There it was demonstrated that
a trading system based on filtering using this model could de-
tect momentum effects and be used to trade profitably, even
in the presence of transaction costs. However, a limitation
of the methodology presented was that the five system para-
meters were chosenad hoc, attempting to maximize portfolio
Sharpe ratio. This paper shows how Bayesian parameter es-
timation for this model (and Jump-Langevin type models in
general) can be performed in a principled manner using a re-
versible jump Markov chain Monte-Carlo (MCMC) scheme
to infer jump times in the trend process, and a Metropolis-
within-Gibbs sampling scheme to infer parameter values. A
related approach for parameter estimation in 1d continuous-
time ARMA processes (without latent trend) is given in [14].

2. MODEL

The model considered here is that used in [13], a two-
component model consisting of a ‘value’x and ‘trend’ ẋ
component. The trend component is modelled as a mean-
reverting random process, with mean reversion rateγ, subject
to Gaussian noise of constant volatilityσ2 and random Gaus-
sian jumps of volatilityσ2

J . Mean reversion within this model
reflects a view that trends will fade over time. The governing
stochastic differential equation (SDE) for the state dynamics
is given by

[
dxt

dẋt

]

=

[
0 1
0 −γ

] [
xt

ẋt

]

dt +

[
0
σ

]

dWt +

[
0
σJ

]

dJt, (1)

wheredWt is the instantaneous change of a standard Brownian
motion anddJt is the instantaneous change of a pure jump
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process defined as

Jt =
∑

k∈{k|τk<t}

Sk,

whereSk ∼ N
(
0, σ2

J

)
, so thatdJt = Sk at τk, i.e. thekth

jump occurs at timeτk and its size is distributed as a zero-
mean Gaussian random variable. Jump timesτk are modelled
as following a Poisson arrival process with rateλ, so that

p(τk | τ1:k−1) = Exp(τk ; λ) , (2)

where Exp(x ; λ) is the exponential distribution density atx.
The ith price observation,yi, observed at timeti, is as-

sumed to be a noisy observation of the value processxti
, per-

turbed by Gaussian noise of fixed varianceσ2
obs:

yi = xti
+ vti

, vti
∼ N (0, σ2

obs). (3)

Without jumps, the system in equation (1) is a Langevin
system, with a zero-reverting trend process, sometimes
known as the Singer model [15], which has a closed form
solution [15]. Fors ≤ t,

p(Xt | Xs) = N (Xt; F (s, t)Xs, R(s, t)) ,

with

F (s, t) =

[
1 1

γ (1 − eγ(s−t))
0 eγ(s−t)

]

,

R(s, t) = σ2

[
q11(s, t) q12(s, t)
q12(s, t) q22(s, t)

]

,

where

q11(s, t) =
1

2γ3
(4eγ(s−t) − 3 − e2γ(s−t) − 2γ(s − t)),

q12(s, t) =
1

2γ2
(e2γ(s−t) + 1 − 2eγ(s−t)),

q22(s, t) =
1
2γ

(1 − e2γ(s−t)).

When jumps are added to the system the state distribution
can be calculatedconditional on the jump times. ForN jumps
at timesτ1, ..., τN such thats < τ1 < ... < τN < t, this gives

p(Xt | Xs, τ1:N ) = N (Xt; F (s, t)Xs, SN ) ,

where the covarianceSN is given by the recursion

SN = R(τN , t) + eA(t−τN )SN−1e
A′(t−τN ),

Sn = R(τn−1, τn) + eA(τn−τn−1)Sn−1e
A′(τn−τn−1) + ΣJ ,

for n = 1, ..., N − 1. This requires that (nominally)τ0 = s.

A =

[
0 1
0 −γ

]

is the system matrix andΣJ =

[
0 0
0 σ2

J

]

is

the jump covariance matrix.

Sincep(Xt | Xs, T ) is linear Gaussian if jump times are
known, a Kalman filter can be constructed to find the distribu-
tion of the system state at observation times, given a series of
linear Gaussian observations, such as those in equation (3);
details can be found in [13]. This can also evaluate the ob-
servation likelihoodp(y1:t | T , θ), conditional on the jump
timesT and set of system parametersθ = {γ, σ, σJ , σobs, λ}.

3. SAMPLING JUMPS: REVERSIBLE JUMP MCMC

If the jump timesT are unknown, as is usually the case,
they can be estimated fromM observations by sampling from
the jump distributionp(T | y1:M , θ), using reversible jump
MCMC [16], [17]. The state of the Markov chain is the entire
set of jump timesT and therefore proposals must be such that
a series of accepted proposals is able to transform any set of
jump times into any other. Furthermore, each of the proposals
must be reversible, so that if a proposal mechanism exists that
could propose a jump sequenceT ′ given a current sequence
T , there is a proposal mechanism that could proposeT when
starting fromT ′ (with non-zero density).

To this end three simple proposal types are allowed: a
moveproposal, in which one jump time is altered locally; a
birth proposal, in which a new jump is created; and adeath
proposal, in which an existing jump is removed. These, along
with their reversals, are shown in Fig. 1 and allow any start-
ing sequence of jump times to be transformed to any other
through a series of moves, births and deaths.

Fig. 1. The three basic types of proposal for state sequence
updates, along with their reversals: move, birth and death

Birth Birth proposals involve generating a new jump time
τ∗ ∼ U(t0, tmax), wheret0 andtmax are the start and end
times of the interval for which state inference is taking
place. This jump time is added into the set of jump
times so thatT ′ = T ∪ τ∗. This proposal is accepted
with probabilitymin(1, αbirth) where

αbirth =
p(y1:M | T ′, θ)p(T ′ | θ)(tmax− t0)

p(y1:M | T , θ)p(T | θ)(N + 1)
,

and whereN is the number of jumps inT .

Death Death proposals are the reverse of birth proposals and
can be created by choosing, uniform randomly, a jump
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time in the setT to remove. If this jump time isτ× then
T ′ = T \τ×. This proposal is accepted with probability
min(1, αdeath)

αdeath =
p(y1:M | T ′, θ)p(T ′ | θ)N

p(y1:M | T , θ)p(T | θ)(tmax− t0)
,

Move Move proposals do not change the state dimension and
so are standard MCMC proposals. The strategy for
creating move proposals used here is to uniform ran-
domly choose a jumpi to move from the existing jump
sequence. If the time of this jump inT is τ , a pro-
posal is created by moving this jump to a new posi-
tion τ ′. ThusT ′ = (T \ τ) ∪ τ ′. A suitable proposal
for the new position is to add a Gaussian random vari-
able to the current jump time. This givesqτ (τ ′ | τ) =
N
(
τ ′; τ, σ2

move

)
, whereσmove determines the scale of

the proposed moves. The proposalT ′ is accepted with
probabilitymin(1, αmove), where

αmove =
p(y1:M | T ′, θ)p(T ′ | θ)
p(y1:M | T , θ)p(T | θ)

.

The proposal is symmetric and so cancels in the above
ratio.

Further mathematical details of this RJ-MCMC scheme
for jump time inference can be found in [18], section 4.2.

In the above, the likelihoodp(y1:M | T ′, θ) is calculated
using the Prediction Error Decomposition of the Kalman filter
as noted in section 2, detailed in [13]. The jump time prior
p(T | θ) can be calculated from the jump model as

p(T | θ) = (1 − Exp(tmax− τN ; λ))
N∏

i=1

Exp(τi − τi−1; λ),

whereτ1:N are an ordered sequence of theN jump times in
T with τ1 < ... < τN and (nominally)τ0 = t0. This assumes
that all jump times are in the range[t0, tmax], however if any
jump time is outside this rangep(T | θ) = 0.

4. SAMPLING PARAMETERS: GIBBS SAMPLER

Conditional on a sample of jump times, the system parameters
can be sampled using a Metropolis-within-Gibbs scheme. In
this, a parameterθi ∈ {γ, σ, σJ , σobs, λ} is sampled from its
full conditional distribution using the decomposition

p(θi | θ−i, T , y1:M ) ∝ p(y1:M | θ, T )p(T | θ)p(θi | θ−i), (4)

whereθ−i = θ \ θi. The conditional likelihood of the ob-
servationsp(y1:M | θ, T ) and the conditional likelihood of
the jump samplep(T | θ) can be evaluated as shown in the
preceding sections. The distribution in equation (4) is not, in
general, easy to sample. Sampling can be performed for each

parameterθi using a Metropolis-Hastings step, with proposal
densityq(θ∗i | θ′i), whereθ′i is the current sample of parameter
θi andθ∗i is a proposal forθi. The acceptance probability for
the proposal is given asmin(1, αθi) with

αθi =
p(y1:M | θ−i, θ

∗
i , T )p(T | θ−i, θ

∗
i )p(θ∗i | θ−i)

p(y1:M | θ−i, θ′i, T )p(T | θ−i, θ′i)p(θ′i | θ−i)
q(θ′i | θ∗i )
q(θ∗i | θ′i)

.

The priorp(θi | θ−i) may depend on the other parameters,
but does not need to, and should be chosen to reflect any ex-
isting beliefs about the distribution of the given parameter.
In the absence of strong beliefs, vague priors can be chosen.
A (symmetrical) Gaussian or Gaussian mixture random walk
proposal can be used with variance chosen to match the scale
over which a particular parameter is expected to vary.

4.1. Jump Rate

The jump rateλ can be sampled efficiently if an appropriate
conjugate prior is chosen, since the inter-jump time is mod-
elled as exponential with rateλ. In this case a Gamma (G)
prior onλ is conjugate and leads to the posterior distribution

p(λ | T , y, θ−λ) = G(λ; αλ + N, βλ + T ),

whereN is the number of jumps in the current jump time
sampleT andT is the total observed time of the process (i.e.
tmax− t0). This distribution can easily be sampled, leading to
an efficient Gibbs sampler for the jump rates. For the avoid-
ance of confusion, the Gamma distribution here is defined as

G(x; α, β) =
βα

Γ(α)
xα−1 exp(−βx),

whereas some definitions (including that of the gampdf func-
tion in Matlab) use1/β as the second parameter.

The prior parameters can be interpreted (in a sense) as
effectively ‘adding’αλ − 1 additional jumps to the jump se-
quence and ‘adding’βλ extra time units to the observation
period when compared to the likelihood distribution forλ,
which is given byL(λ) = G(N + 1, T ).

5. RESULTS

Figures 2 and 3 shows the result of applying the algorithm
described above to synthetic data in order to estimate system
parameters and jump times. The synthetic data used here con-
sisted of 1000 observations generated from the model in equa-
tions (1), (2) and (3). Priors for all parameters were Gamma
distributions so thatp(θi | θ−i) = G(θi; αi, βi), with the
parametersαi = {1, 1.3, 2, 2, 1}, βi = {50, 1, 0.05, 0.1, 10}
for θi ∈ {γ, σ, σJ , σobs, λ}. Since the priors (other than those
for the jump-rates) are evaluated directly, it is straightforward
to incorporate any other prior distribution for each parameter.

The results in figure 2 show good parameter estimation
for this synthetic data, with the true parameters lying within
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Fig. 2. Parameter estimation for synthetic data. Red lines
show true parameter values. Left chart of each pair shows
MCMC sequence for 10000 samples. Right chart of each pair
shows histogram of final 5000 samples (5000 sample burn-in)

Fig. 3. Jump detection in trend process for synthetic data. Red
bars show true jump positions, with colour intensity indicat-
ing jump intensity. Grey bars show proportion of samples
in which a jump is present at each time (over 5000 samples,
after 5000 sample burn-in). Black line is trend process (no
scale shown), with dotted line indicating zero

the distributions of parameter samples for all parameters. As
shown in figure 3, jump positions are also well estimated,
with all jumps being identified and low false detection levels.
These results are typical of those for synthetic data using this
parameter estimation approach.

5.1. Financial Data

The algorithm was applied to 1500 daily USD/GBP exchange
rates between June 2007 and March 2013 (multiplied by 1000
to have a similar scale to equity indices), giving the parameter
estimation results shown in figure 4. As the data is daily (and
comes from a major currency pair), it is possible to compare
the parameter estimates derived here to those used in [13],
which were estimatedad hocby choosing parameters that
produced good Sharpe Ratios in backtesting, rather than dir-
ectly from the data; see table 1. These show that the estimates
in [13], are somewhat different from those obtained using the
model-based estimation procedure here. The parameters used

Fig. 4. Parameter estimation (10000 samples) for USD/GBP
daily exhange rate from June 2007 to March 2013; green lines
show mean parameter value over 5000 post-burn in samples

σobs γ σ σJ λ
USD/GBP 5.6 (0.18) 0.8 (0.07) 7.8 (0.6) 39 (4.6) 0.05 (0.01)
From [13] 26 0.2 7.0 120 0.2
S&P500 7.1 (0.46) 0.73 (0.14) 8.4 (1.1) 45 (7.7) 0.05 (0.02)
From [13] 20 0.2 4.1 70 0.2

Table 1. Estimated parameter means (standard deviations)
compared with those used in [13]

in [13] overestimate jump scaleσJ and rateλ as well as ob-
servation noise scaleσobs, but underestimate process noiseσ
and trend mean reversion rateγ. The high estimated rate of
mean reversion indicates that trends of the sort detectable with
this model are short-lived. Similar results were found when
estimation was conducted using daily S&P500 index prices
from October 2010 to March 2013 [18], as shown in table 1.

Matlab code for the system detailed in this paper can be
found atwww-sigproc.eng.cam.ac.uk/Main/JM362.

6. CONCLUSION

This paper has presented a batch method of parameter estim-
ation for Jump-Langevin systems of the type used to model
trends in financial data in earlier work [13], based on revers-
ible jump MCMC for jump time detection. Tests on synthetic
data show the algorithm is effective at correctly estimating
system parameters and detecting the times of jumps in the
trend process. Testing on financial data found differences
between thead hocparameter values used in earlier work,
and those estimated from the data, particularly for observation
noise scaleσobs and mean reversion rateγ. The effect of this
mis-specification on the results in [13] is currently unknown.
The results for USD/GBP exchange rates and S&P500 data
appear to indicate that the types of trends described by this
model are short-lived in the periods tested, as indicated by the
high mean-reversion rateγ.
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