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ABSTRACT points a momentum strategy following a trend can make sig-

. . nificant losses if it is unable to identify the change quickl
In this paper we present a Bayesian method for paramet%r fy geq y

AR . . nd alter its position accordingly.
estimation in linear Jump-Langevin systems, i.e. systems . .

. . 2= e In [13], a model-based tracking algorithm was proposed
driven by a linear, mean-reverting jump-diffusion trend pro-

cess. Such models have been applied successfully to trert% infer price momentum, using a particle filter for on-line

following in finance, in order to develop momentum-base rend inference. In order to cope with rapldly chang_lng trends,
: - I he trend process was modelled as a jump-diffusion process
trading strategies. Parameter estimation is based around . .
A . . - allowing sudden trend changes to be modelled. Details of the
reversible-jump MCMC method for jump-time inference.

Co . naodel are given in section 2. There it was demonstrated that
Parameter estimation is demonstrated on both synthetic an . o . .
%éradlng system based on filtering using this model could de-

financial time series, and estimated parameters are compar :
. : . . tect momentum effects and be used to trade profitably, even
with ad hocparameter estimates used in earlier work. . . A
in the presence of transaction costs. However, a limitation
Index Terms— Jump-diffusion, parameter estimation, of the methodology presented was that the five system para-
trend following, Bayesian, finance meters were chosead hog attempting to maximize portfolio
Sharpe ratio. This paper shows how Bayesian parameter es-
timation for this model (and Jump-Langevin type models in
general) can be performed in a principled manner using a re-

pversible jump Markov chain Monte-Carlo (MCMC) scheme

ancial markets, including those for commaodities [1], foreignto_ ihn_ferej_L;)rSp timesl_in thehtrend pr_O(f:ess, and a MetrlopolisA
exchange [2] and equities [3]. This is apparently in defiancd/!thin-GIbbs sampling scheme to inter parqmeter values.
of the Efficient Market Hypothesief [4], which states that rglated approach for pargmeter estimation in 1‘,1 Coqtlnuous-
prices should not be predictable from analysing their past hidiMme ARMA processes (without latent trend) is given in [14].
tory. However, momentum effects appear to persist [5] and
continue to be exploited, in spite of reports of their declining 2 MODEL
strength [6] or illusory nature [7]. Proposed explanations of '
these effepts mostly divide !ntp two groups: herding effects,]_he model considered here is that used in [13], a two-
whereby investors all buy similar assets (e.g. ones that have - . ! . , .

component model consisting of a ‘valug’ and ‘trend’ &

recently performed well) [8] [9], and delayed market reac- .

. . . .~ component. The trend component is modelled as a mean-
tion to news or changes in fundamentals (i.e. over multlple;evertin random process. with mean reversionatabiect
trading periods), meaning that the effect of incorporating nev, 9 mp ' o TarIb)

. L . . ; 0 Gaussian noise of constant volatility and random Gaus-
information in asset prices is not instantaneous [10] [5]. L S . o

In order to exploit momentum effects for trading, it is sian jumps of volatilitys;. Mean reversion within this model

necessary to identify trends that are present in asset riCereflects a view that trends will fade over time. The governing
fy to fy o P €L PMC8ochastic differential equation (SDE) for the state dynamics
Many strategies exist for this, including ones as simple a

buying shares that performed well in previous periods, whic:kfS given by

have been shown to be effective under certain circumstances d 0 110z 0 0
[11]. However, for momentum trading, it is equally important Ll t} = {0 B } {t] dt + [U} AW + L } dJy, (1)
to identify points at which trends change [12] since at those T L J

1. INTRODUCTION

Momentum effects have been found to exist in numerous fi
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process defined as Sincep(X; | Xs,7T) is linear Gaussian if jump times are
known, a Kalman filter can be constructed to find the distribu-
Jy = Z Sk, tion of the system state at observation times, given a series of
ke{k|m<t} linear Gaussian observations, such as those in equation (3);
details can be found in [13]. This can also evaluate the ob-
whereS, ~ N (0,07), so thatdJ, = S at 7, i.e. thek"  servation likelihoodo(ys.; | T,6), conditional on the jump

jump occurs at time;, and its size is distributed as a zero- times7 and set of system parametérs- {7,0,07,00bs A}-
mean Gaussian random variable. Jump timeare modelled

as following a Poisson arrival process with rateso that 3. SAMPLING JUMPS: REVERSIBLE JUMP MCMC

P(Tk | T1:k—1) = EXp(7k 1) 2) If the jump times7 are unknown, as is usually the case,
where Expz ; \) is the exponential distribution densityat  they can be estimated froff observations by sampling from
The i price observationy;, observed at time;, is as-  the jump distributionp(7" | y1.as,0), using reversible jump
sumed to be a noisy observation of the value procgsper- MCMC [16], [17]. The state of the Markov chain is the entire

turbed by Gaussian noise of fixed variamdgg set of jump timeg” and therefore proposals must be such that
a series of accepted proposals is able to transform any set of
Yi = Ty, + Vg, vy, ~ N(0,0%,). (3) jumptimes into any other. Furthermore, each of the proposals

must be reversible, so that if a proposal mechanism exists that
Without jumps, the system in equation (1) is a Langevincould propose a jump sequené given a current sequence
system, with a zero-reverting trend process, sometimes’ there is a proposal mechanism that could profsenen
known as the Singer model [15], which has a closed fornstarting from7” (with non-zero density).
solution [15]. Fors < ¢, To this end three simple proposal types are allowed: a
moveproposal, in which one jump time is altered locally; a
p(Xe | Xs) = N (Xi; F(s, ) Xs, R(s, 1)) birth proposal, in which a new jump is created; andeath
proposal, in which an existing jump is removed. These, along

with
with their reversals, are shown in Fig. 1 and allow any start-
Flst) = 1 %(1 —e(s—1) ing sequence of jump times to be transformed to any other
(5,) = 0 eV(s—t) ’ through a series of moves, births and deaths.
t) q12(8 t)
R(s,t — 2 QI1(57 ) ’ . - L g
(s,2) ? [Q12(87t) q22(s, 1) ‘ E sle ;E
where T move o birth - death -
1 T S L .
a(st) = S50 =300 —29(s —1)), | ::;z: M
Q12(8, t) _ 272 (627(570 +1-— 267(571,))7 reversal (move) reversal (death) reversal (birth)
Y
1 ) . .
qo2(s,t) = 2—(1 - e27<“'*”). Fig. 1. The three basic types of proposal for state sequence
v updates, along with their reversals: move, birth and death

When jumps are added to the system the state distribution
can be calculatedonditional on the jump time$or N jumps

attimesr, ..., ry suchthat < 7, < ... < 7y < £, this gives Birth Birth proposals involve generating a new jump time

Tw ~ U(to, tmax), Wherety andtmax are the start and end

p(Xy | Xo,1in) = N (X4 F(s,8)X,, Sn) times of the interval for which state inference is taking
' ’ place. This jump time is added into the set of jump
where the covarianc&y is given by the recursion times so that/’ = 7 U 7,. This proposal is accepted
) with probability min(1, apirn) Where
SN = R(tn,t)+ AN G e ) ( T 0)p(T" | 0)( )
_ o P(Y1:m ,0)p tmax — %o
Sn = R n—1,Tn Alrn T7"71)S77.7 AT —Tn-1) by s Qi = 3
(Tnt,7a) e e R W s | T-0(T [O)N 1)
forn :01, 17 N — 1. This requires that (nominrally)gﬂ: S. and whereV is the number of jumps iff".
4= 0 f'y} Is the system matrix antl,; = {() 03} 'S" Death Death proposals are the reverse of birth proposals and
the jump covariance matrix. can be created by choosing, uniform randomly, a jump
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time in the set to remove. If this jump time is, then  parameted,; using a Metropolis-Hastings step, with proposal
T' = T\7«. This proposal is accepted with probability densityq(0; | ¢}), wheref!, is the current sample of parameter
min(1, ageath 0; and@; is a proposal fop;. The acceptance probability for
the proposal is given asin(1, o, ) with
p(yrm | 7',0)p(T" | O)N

p(yiae | T,0)p(T | 0)(tmax — to)’ pQyrar | 04,07, T)p(T | 0, 07)p(0; | 6-i) a(0; | 07)

g, = .
" plyran [0, 0, T)p(T [0-5,6)p(0; [ 6-3) (07 ] 6})
Move Move proposals do not change the state dimension and

so are standard MCMC proposals. The strategy forl N€ priorp(6; | 6—;) may depend on the other parameters,
creating move proposals used here is to uniform ranPUt does not need to, and should be chosen to reflect any ex-

domly choose a jumpto move from the existing jump isting beliefs about the distr_ibution of the_ given parameter.
sequence. If the time of this jump i@ is 7, a pro- In the absence of stron_g beliefs, vague priors can be chosen.
posal is created by moving this jump to a new posi-A (symmetrical) Gaussu'.;m or Qaussuan mixture random walk
tion7'. Thus7’ = (7 \ 7) U 7'. A suitable proposal proposal can be used with variance chosen to match the scale

for the new position is to add a Gaussian random vari®Ver which a particular parameter is expected to vary.

able to the current jump time. This gives(t’ | 7) =
N (77, 0200)» Whereomoe determines the scale of 4.1. Jump Rate
the proposed moves. The propo&alis accepted with
probabilitymin(1, amove), Where

Qdeath

The jump rate\ can be sampled efficiently if an appropriate
conjugate prior is chosen, since the inter-jump time is mod-
pyras | T, 0)p(T" | 0) elled as exponential with rate. In this case a Gamma)

« = . rior on \ is conjugate and leads to the posterior distribution
v =y | T,0)p(T | 0) P g P

The proposal is symmetric and so cancels in the above P [ 759,0-3) = G(Aax + N, 6y +T),

ratio. where N is the number of jumps in the current jump time

Further mathematical details of this RJ-MCMC schemesampleT and_T i? th_e tqtal observe_d time of the process (ie.
for jump time inference can be found in [18], section 4.2. bmax *.t(.))' Th|§ distribution can eaglly be sampled, leading .to
In the above, the likelihoog(y1.n: | 77,6) is calculated an efficient Glb_bs sampler for th(_eju'mp_rates. Fc_)r the_ avoid-
using the Prediction Error Decomposition of the Kalman filtler2¢® of confusion, the Gamma distribution here is defined as
as noted in section 2, detailed in [13]. The jump time prior g
p(T | ) can be calculated from the jump model as G(x; o, B) = " exp(—p),

N whereas some definitions (including that of the gampdf func-
p(T | 0) = (1 — Expltmax — 753 A)) | [ EXp(ri — 7im13 M), tion in Matlab) use//s as the second parameter.

i=1 The prior parameters can be interpreted (in a sense) as
wherer,.y are an ordered sequence of tNejump times in  effectively ‘adding’a, — 1 additional jumps to the jump se-
T with 71 < ... < 7y and (nominally)r, — £. This assumes duence and ‘adding extra time units to the observation
that all jump times are in the rang&, tmay, however if any per_lod_wh_en compared to the likelihood distribution far
jump time is outside this rang€7 | §) = 0. which is given byL(\) = G(N + 1, 7).

4. SAMPLING PARAMETERS: GIBBS SAMPLER 5. RESULTS

Conditional on a sample of jump times, the system parametefddures 2 and 3 shows the result of applying the algorithm
can be sampled using a Metropolis-within-Gibbs scheme. |§escribed above_ to syr_1thet|c data in ordt_er to estimate system
this, a parametet; € {7, 0,0, gops A} is sampled from its pgrameters and jump tlmes. The synthetic data used here con-
full conditional distribution using the decomposition §|sted of 1000 observathns generated from the model in equa-
tions (1), (2) and (3). Priors for all parameters were Gamma
PO 10—, T yuan) o< plyrar |0, D)p(T | 0)p(0; | 0—), (4) distributions so thap(6; | 6i) = G(0:; i, 5i), with the
parametersy; = {1,1.3,2,2,1},5; = {50,1,0.05,0.1,10}
wheref_; = 6\ 6,. The conditional likelihood of the ob- for 6; € {v, 0,0, oobs, A}. Since the priors (other than those
servationsp(y1.as | 6,7) and the conditional likelihood of for the jump-rates) are evaluated directly, it is straightforward
the jump samplex(7 | 9) can be evaluated as shown in theto incorporate any other prior distribution for each parameter.
preceding sections. The distribution in equation (4) is not, in  The results in figure 2 show good parameter estimation
general, easy to sample. Sampling can be performed for eaébr this synthetic data, with the true parameters lying within
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Fig. 2. Parameter estimation for synthetic data. Red line$ig. 4. Parameter estimation (10000 samples) for USD/GBP
show true parameter values. Left chart of each pair showdaily exhange rate from June 2007 to March 2013; green lines
MCMC sequence for 10000 samples. Right chart of each paghow mean parameter value over 5000 post-burn in samples
shows histogram of final 5000 samples (5000 sample burn-in)

Oobs Y o og A
USD/GBP 5.6 (0.18) 0.8(0.07) 7.8(0.6) 39(4.6) 0.05(0.01)
| From [13] 26 0.2 7.0 120 0.2
ST S&P500 7.1(0.46) 0.73(0.14) 8.4(1.1) 45(7.7) 0.05(0.02)
§ 08 From [13] 20 0.2 4.1 70 0.2
gos»
£l M I\\Wh m Table 1. Estimated parameter means (standard deviations)
= ]~ \J Uf compared with those used in [13]
e 1|

1 . . . " . " A N
140 160 180 200 220 240 260 280 300 320 340
observation number (1)

in [13] overestimate jump scate; and rate\ as well as ob-

Fig. 3. Jump detection in trend process for synthetic data. Re§€rvation noise scaleos, but underestimate process noise
bars show true jump positions, with colour intensity indicat-2nd trend mean reversion raje The high estimated rate of -
ing jump intensity. Grey bars show proportion of samplegnean reversion indicates that trends of the sort detectable with
in which a jump is present at each time (over 5000 sampleéhis model are short-lived. Similar results were found when

after 5000 sample burn-in). Black line is trend process (n@stimation was conducted using daily S&P500 index prices
scale shown), with dotted line indicating zero from October 2010 to March 2013 [18], as shown in table 1.

Matlab code for the system detailed in this paper can be
found atwww-sigproc.eng.cam.ac.uk/Main/JM362
the distributions of parameter samples for all parameters. As
shown in figure 3, jump positions are also well estimated, 6. CONCLUSION
with all jumps being identified and low false detection levels.

These results are typ|Ca| of those for SynthetiC data USing thr$h|s paper has presented a batch method of parameter estim-

parameter estimation approach. ation for Jump-Langevin systems of the type used to model
trends in financial data in earlier work [13], based on revers-
5.1. Financial Data ible jump MCMC for jump time detection. Tests on synthetic

data show the algorithm is effective at correctly estimating
stem parameters and detecting the times of jumps in the
end process. Testing on financial data found differences

The algorithm was applied to 1500 daily USD/GBP exchang
rates between June 2007 and March 2013 (multiplied by 100,

to have a similar scale to equity indices), giving the paramet etween thead hocparameter values used in earlier work,

estimation results_shown n flgurg 4 .A.S the dgta is daily (an nd those estimated from the data, particularly for observation
comes from a major currency pair), it is possible to compar%7

h . derived h h din 11 oise scalerops and mean reversion rate The effect of this
the parameter estimates derived here to those used in [ is-specification on the results in [13] is currently unknown.

which were estimatead hocby choosing parameters that The results for USD/GBP exchange rates and S&P500 data

pl’OldL;CEd ghoog Sh.arpe Rzrios in l?ackter]stingr]ratuer the_ln di&' pear to indicate that the types of trends described by this
ectly from the data; see table 1. These show that the estimatg, jo| are short-lived in the periods tested, as indicated by the

in [13], are somewhat different from those obtained using th(f,]i h mean-reversion rate
model-based estimation procedure here. The parameters useg
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