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ABSTRACT

The particle Gibbs algorithm can be used for Bayesian parameter es-
timation in Markovian state space models. Sometimes the resulting
Markov chains mix slowly when the component particle filter suf-
fers from degeneracy. This effect can be somewhat alleviated using
backward simulation. In this paper we show how a simple mod-
ification to this scheme, which we refer to as refreshed backward
simulation, can further improve the mixing. This works by sampling
new state values simultaneously with the corresponding ancestor in-
dexes. Although the necessary conditional distributions cannot be
sampled directly, we provide suitable Markov kernels which target
them. The efficacy of this new scheme is demonstrated with a simu-
lation example.

Index Terms— Sequential Monte Carlo, particle Markov chain
Monte Carlo, Gibbs sampling, backward simulation

1. INTRODUCTION

Particle Markov chain Monte Carlo (PMCMC) algorithms [1, 2, 3, 4]
provide an elegant and effective solution for Bayesian parameter
learning with Markovian state space models. They are based on
the formulation of an extended target distribution over the system
of random variables comprising a particle filter, which has the de-
sired posterior distribution as a marginal. A Markov chain for which
this extended distribution is invariant may be constructed using se-
quential Monte Carlo (SMC) components. The particle system is
composed of a set of states for each time step and corresponding
ancestor index variables, which define a set of state trajectories.

In this paper we consider in particular the particle Gibbs (PG)
algorithm, introduced by [1]. This samples in turn new values for
the unknown parameters, the particle system, and an index variable
indicating one reference trajectory. Sampling the particle system is
equivalent to running a modified particle filter. Like any Gibbs sam-
pler, this has the advantage over Metropolis-Hastings of not requir-
ing an accept/reject stage. However, the resulting chains are still
liable to mix slowly if the particle filter suffers from path-space de-
generacy.

It is possible to reduce degeneracy, and thus improve the mix-
ing of the PG Markov chain, by incorporating additional sampling
steps, either during the filtering stage, known as particle Gibbs with
ancestor sampling (PG-AS) [4], or in an additional backward sweep,
known as particle Gibbs with backward simulation (PG-BS) [5, 6].
The improvement arises from sampling new values for individual
ancestor indexes, and thus allowing the reference trajectory to be
updated gradually rather than changing it all at once.

For near-degenerate models, mixing may be slow even when us-
ing PG-BS or PG-AS. Specifically, when the model transition distri-
bution is highly informative, the probability of sampling any change

in the particle ancestry is low. Intuitively, the problem is that the only
state history consistent with a particular future is that from which the
future was originally generated. We can mitigate this effect by using
a modified procedure which we call refreshed backward simulation
[7, 8]. When sampling an ancestor index for the reference trajectory,
we simultaneously sample a new value for the associated state. This
allows us some leeway to steer the potential state histories towards
the fixed future, consequently increasing the probability of changing
the ancestry and thus improving the mixing of the Markov chain.

A recent paper [9] presents ideas which have some overlap with
our work. Specifically, they use Markov chain Monte Carlo during
a backward sweep to sample new state values. However, they in-
troduce a different extended target distribution in order to justify this
addition, which necessitates changes to the conditional particle filter,
whereas we only use the standard PMCMC distribution.

1.1. State Space Modelling and the Particle Filter

We consider a standard Markovian state space model with a se-
quence of latent states xt ∈ X : t = 1, . . . , T , and a corresponding
sequence of observations yt ∈ Y : t = 1, . . . , T . We assume that
the transition and observation distributions have associated densities
with respect to some appropriate measure (e.g. Lebesgue),

xt|xt−1 ∼ fθ,t(xt|xt−1) yt|xt ∼ gθ,t(yt|xt).

We use the convention that fθ,1(x1|x0) = fθ,1(x1) is the prior den-
sity of the first state. The variable θ ∈ Θ is a collection of unknown
model parameters upon which fθ,t and gθ,t depend, which has a
prior density p(θ).

Our objective is to approximate the joint posterior density over
all the unknown variables,

p(θ, x1:T |y1:T ) =
1

Z
p(θ)

T∏
t=1

gθ,t(yt|xt)fθ,t(xt|xt−1), (1)

where Z is a normalising constant.
The particle filter is a sequential Monte Carlo algorithm which

recursively approximates the sequence of densities p(x1:t|θ, y1:t) :
t = 1, . . . , T . This is achieved by propagating forwards a collection
of N particles {x(i)1:t : i = 1, . . . , N}, each of which is a realisation
of the state sequence, along with a set of associated weights {w(i)

t :
i = 1, . . . , N}. This procedure is well established. See e.g. [10,
11, 1, 6] for details of particle filters and their use as a component in
PMCMC schemes.

Particle filters exhibit a significant deficiency known as path-
space degeneracy. Only a subset of the particles at each time instant
are used in the construction of those at the next time instant. This
means that the number of unique states appearing in the trajectories
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decreases as we look back in time. If T is sufficiently large, then
there will be a time step before which every particle is the same
[12].

2. PARTICLE GIBBS

An ideal Gibbs sampler for targeting (1) might alternately sam-
ple from the state and parameter conditional distributions,
p(x1:T |θ, y1:T ) and p(θ|x1:T , y1:T ). We assume here that the
parameter conditional is straightforward to sample from, either
directly using conjugate priors or with Metropolis-Hastings (MH).
Sampling from the state conditional is the more challenging step.
This can rarely be achieved directly. A particle filter could be used
to return an approximately distributed sample, but the resulting
algorithm will not have the correct target distribution because of this
approximation. The approach used by particle Gibbs is to construct
an extended distribution over all the random variables comprising
a particle filter. This may be targeted without approximation, and
admits the desired posterior as a marginal.

The PMCMC extended target distribution is constructed over the
space of an entire particle system. This comprises states and ancestor
indexes,

xt = {x(i)t : i = 1, . . . , N} t = 1, . . . , T

at = {a(i)t : i = 1, . . . , N} t = 2, . . . , T.

The ancestor index a(i)t ∈ {1, . . . , N} indicates the (t − 1) parent
state from which x(i)t follows. Hence, each particle state trajectory
is constructed recursively by tracing the lineage described by these
ancestor indexes,

x
(i)
1:t = x

(a
(i)
t )

1:t−1 ∪ x(i)t .

Furthermore, let K ∈ {1, . . . , N} be the index of one particular
reference trajectory, and indicate the ancestry of this particle by,

bt =

{
K t = T

a
(bt+1)
t+1 t = T − 1, . . . , 1.

For this reference trajectory write,

x
(b1:T )
1:T = {x(bt)t : t = 1, . . . , T},

and for the remaining states,

x
(−b1:T )
1:T = x1:T \ x(b1:T )

1:T .

The extended target distribution may now be written as,

π(θ,a2:T ,x1:T ,K) =
1

NT
p(θ, x

(b1:T )
1:T |y1:T )

×
∏
i6=b1

q1(x
(i)
1 )

T∏
t=2

∏
i6=bt

w
(a

(i)
t )

t−1∑
j w

(j)
t−1

qt(x
(i)
t |x

(a
(i)
t )

t−1 )

 , (2)

in which the unnormalised importance weights are,

w
(i)
t = fθ,t(x

(i)
t |x

(a
(i)
t )

t−1 )gθ,t(yt|x(i)t )/qt(x
(i)
t |x

(a
(i)
t )

t−1 ) (3)

and {qt} are importance densities. These may depend on the obser-
vation sequence y1:T , and the same convention regarding q1 is used
as for the fθ,1. By construction the extended target distribution has
the desired posterior as a marginal.

During each step of the particle Gibbs algorithm new values are
sampled in turn from appropriate conditional posterior distributions
for θ, then {a(−b2:T )

2:T ,x
(−b1:T )
1:T }, and finally K.

The conditional for the non-reference particles may, by con-
struction, be sampled sequentially forwards in time. This procedure
is known as a conditional particle filter, since it consists of the same
operations as a standard particle filter, but for one ancestor-state pair
at each time step which is set deterministically to be equal to that of
the reference trajectory.

The conditional for the reference trajectory index is [1],

π(K|θ,a2:T ,x1:T ) =
w

(K)
T∑
j w

(j)
T

.

Thus, an index is sampled by normalising the final particle filter
weights and then drawing once from the resulting categorical dis-
tribution.

3. PARTICLE GIBBS WITH BACKWARD SIMULATION

Mixing of the particle Gibbs algorithm can be very slow. This can
be seen as a failing of the conditional particle filter. The reference
trajectory is guaranteed to appear in the final particle system. If the
system suffers from path-space degeneracy then the old and new ref-
erence trajectories are likely to have a near-identical ancestry, with
differences only appearing towards the end of the sequence. The
Markov chain required for the early states to converge will be im-
practically long.

3.1. Standard Backward Simulation

As suggested by [5], this problem may be mitigated by including an
additional sampling stage in each step of the PG algorithm. Sweep-
ing backwards, for each time step a new ancestor index is drawn
from,

π(a
(bt)
t |θ,a2:t−1,x1:t−1, a

(bt+1:T )

t+1:T , x
(bt:T )
t:T ,K)

=
w

(a
(bt)
t )

t−1 fθ,t(x
(bt)
t |x(a

(bt)
t )

t−1 )∑
j w

(j)
t−1fθ,t(x

(bt)
t |x(j)t−1)

. (4)

Note that each of these operations is a collapsed Gibbs move, mean-
ing that some of the variables are marginalised before conditioning.
Specifically, we have marginalised the future states and ancestors
other than those in the reference trajectory. Marginalisation is com-
monly used for Gibbs samplers to improve the mixing and to sim-
plify the implementation, and if correctly formulated will not alter
the stationary distribution; see [13] for details.

Algorithmically, this additional stage corresponds to backward
simulation [14]. The sampler sweeps backwards through time, sam-
pling a new value for each ancestor index a(bt)t from a set of smooth-
ing weights proportional tow(i)

t fθ,t(x
(bt)
t |x(i)t−1). Backward simula-

tion within PG was suggested by [5], and explored by [6], although
in the latter case using a modified extended target distribution.

3.2. Refreshed Backward Simulation

Backward simulation allows the sampler to change the ancestry of
the reference trajectory even when the conditional particle filter suf-
fers from degeneracy. However, if the model transition density is
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Fig. 1. An illustration of ineffective backward simulation on a toy
linear-Gaussian problem. Crosses indicate particle filter states, and
dotted lines the ancestries. The reference particle is shown with
a solid line. A backward simulation sweep does not result in any
changes to the reference particle ancestry.

tightly concentrated in one area of the state space (e.g. if the vari-
ance V[xt|xt−1] is small) then the probability of changing the an-
cestor indexes may be very low. See Fig 1. If this situation arises,
then the ability of backward simulation to mitigate the problems of
particle degeneracy and accelerate the mixing of PG can be limited.

We can increase the chances of altering the ancestry, and thus
further improve mixing of the Markov chain, if the backward simu-
lation algorithm is modified to simultaneously sample a new value
for each state along with the corresponding ancestor index. At each
time instant we now sample from,

π(a
(bt)
t , x

(bt)
t |θ,a2:t−1,x1:t−1, a

(bt+1:T )

t+1:T , x
(bt+1:T )

t+1:T ,K) (5)

=
w

(a
(bt)
t )

t−1 fθ,t(x
(bt)
t |x(a

(bt)
t )

t−1 )gθ,t(yt|x(bt)t )fθ,t+1(x
(bt+1)
t+1 |x(bt)t )∑

j w
(j)
t−1

∫
fθ,t(x|x(j)t−1)gθ,t(yt|x)fθ,t+1(x

(bt+1)
t+1 |x)dx

.

As before, this is a collapsed Gibbs move.
In standard backward simulation, the conditional for each ances-

tor index is a categorical distribution (4), which can be sampled di-
rectly by evaluating the weight associated with each possible value,
or by rejection sampling [15, 16]. It is also possible to use an MH
kernel targeting this distribution [7].

In contrast, the joint conditional for state-ancestor pairs is a
mixed continuous-discrete distribution (5). Since it will not in gen-
eral be possible to sample from this distribution directly, we consider
two possible Markov kernels which can be used instead. To clarify
the following explanations, we write the one-step target distribution
in a simplified form, omitting superfluous indexes and conditioning,

π(at, xt|xt−1) =
w

(at)
t−1 ρt(xt|x(at)t−1 )∑

j w
(j)
t−1

∫
ρt(x|x(j)t−1)dx

(6)

ρt(xt|x(at)t−1 ) = fθ,t(xt|x(at)t−1 )gθ,t(yt|xt)fθ,t+1(x
(bt+1)
t+1 |xt).

3.2.1. Metropolis-Hastings

We can target (6) using MH. From current values a∗t and x∗t , we can
propose new values a′t and x′t by drawing from,

v
(at)
t−1∑
j v

(j)
t−1

φt(xt|x(at)t−1 , x
∗
t ), (7)

in which {v(i)t−1 : i = 1, . . . , N} are a set of proposal weights for
the ancestor index and φt is a new proposal density. The resulting

acceptance probability is then,

α({a∗t , x∗t } → {a′t, x′t})

= min

{
1,

w
(a′t)
t−1 ρt(x

′
t|x(a

′
t)

t−1 )

v
(a′t)
t−1 φt(x

′
t|x

(a′t)
t−1 , x

∗
t )

v
(a∗t )
t−1 φt(x

∗
t |x(a

∗
t )

t−1 , x
′
t)

w
(a∗t )
t−1 ρt(x

∗
t |x

(a∗t )
t−1 )

}
(8)

This is the scheme suggested in [7] for state smoothing.

3.2.2. Conditional Importance Sampling

The marginal conditional distribution for the ancestor indexes is,

π(at|xt−1) =

∫
π(x, at|xt−1)dx =

w
(at)
t−1

∫
ρt(x|x(at)t−1 )dx∑

j w
(j)
t−1

∫
ρt(x|x(j)t−1)dx

.

If this distribution is dominated by a small number of ancestors with
high probability, then an MH kernel will be inefficient. It may take
a large number of steps before one of these is proposed. In such
circumstances it may be advantageous to use the following method
based on conditional importance sampling (CIS) instead.

CIS uses the same principle as the conditional particle filter
[1], but applied to a single time step. Suppose we have the current
values a∗t and x∗t , then a Markov kernel may be constructed with
(6) as its invariant distribution by following algorithm 1, in which
ψt(xt|xt−1) is an appropriate importance density.

Algorithm 1 Conditional importance sampling for the joint
ancestor-state conditional distributions.
Require: Preceding particle states xt−1, current values a∗t and x∗t .

1: Sample an index uniformly c∗ ∈ {1, . . . , N}.
2: Set a(c

∗)
t = a∗t . Set x(c

∗)
t = x∗t .

3: for all i ∈ {1, . . . , N} \ c∗ do

4: Sample a(i)t ∼
v
(at)
t−1∑
j v

(j)
t−1

. Sample x(i)t ∼ ψt(xt|x
(a

(i)
t )

t−1 ).

5: end for

6: Sample c′ ∼ u
(c)
t∑

j u
(j)
t

, where ut =
w

(a
(i)
t )

t−1 ρt(x
(i)
t |x

(a
(i)
t )

t−1 )

v
(a

(i)
t )

t−1 ψt(x
(i)
t |x

(a
(i)
t )

t−1 )

.

7: Set a′t = a
(c′)
t .

8: Set x′t = x
(c′)
t .

9: return New values a′t and x′t.

To justify that this is a correct Markov kernel, we construct an-
other extended target distribution over these particles, (Note that this
set of particles is separate to that of the primary Gibbs sampler.)

η(at,xt, c) =
1

N
π(x

(c)
t , a

(c)
t |xt−1)

∏
i 6=c

v
(a

(i)
t )

t∑
j v

(j)
t

ψt(x
(i)
t |x

(a
(i)
t )

t−1 ).

The first part of algorithm 1 by construction corresponds to sampling
from the conditional distribution, η(a

(−c)
t ,x

(−c)
t |a(c)t , x

(c)
t , c), and

the final part to sampling from η(c|at,xt). Hence, if the starting
values are distributed according to the desired posterior, then the
final values must also be, and so the procedure is a Markov kernel
with the desired invariant distribution.
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4. EXTENSIONS AND VARIATIONS

4.1. Multiple Time Steps

In extreme cases, even with refreshed backward simulation the up-
date rate of the earliest states may be low. If this occurs, it is may
be beneficial to extend the method to sample states at multiple steps,
thus giving us yet more leeway to match the sampled future to the
possible particle histories. At each time instant we now sample from,

π(a
(bt)
t , x

(bt:t+L−1)

t:t+L−1 |θ,x1:t−1,a2:t−1, x
(bt+L:T )

t+L:T , a
(bt+1:T )

t+1:T ,K)

∝ w(a
(bt)
t )

t−1 fθ,t+L(x
(bt+L)

t+L |x(bt+L−1)

t+L−1 )

×
t+L−1∏
k=t

fθ,k(x
(bk)
k |x(a

(bk)

k
)

k−1 )gθ,k(yk|x(bk)k ).

As before, this is a collapsed Gibbs move. Implementing such a
scheme will require careful design of proposal or importance densi-
ties for the joining bridge of states x(bt:t+L−1)

t:t+L−1 .

4.2. Ancestor Sampling

Rather than conducting the complete forward sweep (i.e. the con-
ditional particle filter) followed by a backward simulation sweep,
the steps of the two may be interleaved. This is the basis of particle
Gibbs with ancestor sampling (PG-AS) [4]. At time step t, we would
first sample from,

π(a
(−bt)
t ,x

(−bt)
t |θ,a2:t−1,x1:t−1, a

(bt:T )
t:T , x

(bt:T )
t:T ,K),

and then from,

π(a
(bt)
t , x

(bt)
t |θ,a2:t−1,x1:t−1, a

(bt+1:T )

t+1:T , x
(bt+1:T )

t+1:T ,K).

5. SIMULATIONS

5.1. The Model

Particle Gibbs (PG), Particle Gibbs with Backward Simulation (PG-
BS) and Particle Gibbs with Refreshed Backward Simulation (PG-
RBS) were tested on a tracking model. The transition model is 3D
near constant velocity motion [17], and the observation model is
noisy measurements of bearing, elevation and range. The parameter
to be learned is the scale factor on the transition covariance matrix
σ2, which characterises the target manoeuvrability. Data sets are
simulated from the model, each with 100 time steps. An uninforma-
tive conjugate prior is used for σ2.

5.2. Algorithm Settings

The algorithms were each run on 5 different simulated data sets.
Each algorithm was run for 5000 iterations, with a burn in of 1000.
PG and PG-BS were run twice, with 100 and 200 particles each. PG-
RBS was run with 100 particles. PG-RBS with 100 particles takes
roughly the same time as PG-BS with 200 particles.

The particle filter uses an extended Kalman filter approximation
to the optimal importance density,

qt(xt|xt−1) ≈ p(xt|xt−1, yt).

PG-RBS is implemented with the CIS method using a similar Gaus-
sian approximation for the importance density,

ψt(xt|xt−1) ≈ p(xt|xt−1, xt+1, yt).
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Fig. 2. Posterior sample histograms.
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Fig. 3. Mean autocorrelation function for PG-BS and PG-RBS.

For the proposal weights, we use v(i)t = w
(i)
t .

5.3. Results

PG does not mix well at all. Parameter estimates do not approach the
true value, even after 5000 iterations. PG-BS and PG-RBS do con-
verge. Figure 2 shows the posterior histograms and figure 3 the mean
autocorrelation function over the 5 simulations. The latter indicates
faster mixing from PG-RBS with both equal-time and equal-particle
equivalents.

6. DISCUSSION AND CONCLUSIONS

We have introduced a simple but effective modification to particle
Gibbs which can significantly improve the mixing of the Markov
chains. This uses a sweep of refreshed backward simulation after
each iteration of the conditional particle filter, in which new values
of the states of the reference trajectory are sampled along with their
corresponding ancestor indexes. Direct sampling of the appropriate
conditional distributions is not generally possible, however suitable
Markov kernels are available instead. As well as basic Metropolis-
Hastings, we have presented a kernel based on conditional impor-
tance sampling. The benefit of using refreshed backward simulation
will depend on the efficiency of this Markov kernel. Simulations on a
simple tracking model have demonstrated substantial improvements
in Markov chain autocorrelation.
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