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ABSTRACT

Particle filtering has been widely accepted as an important
methodology for processing data represented by state-space models
characterized by nonlinearities and/or non-Gaussianities. It is
also well documented that particle filtering deteriorates quickly in
performance when the dimension of the tracked state becomes large.
This limits its application in many science/engineering problems.
Previously we have proposed a way of alleviating this deficiency
based on the use of multiple particle filtering. According to
the approach, a number of particle filters are assigned to track
different subsets of the state with time. In this paper, we propose
a new method for accurate and efficient implementation of multiple
particle filtering. We provide simulation results that demonstrate the
performance of the new method.

Index Terms— multiple particle filtering, state-space models,
high-dimensional systems

1. INTRODUCTION

An important area of signal science is the sequential processing
of observations that are represented by state-space models. The
objective there is to obtain an estimate of a hidden state (signal)
given available observations. The state follows a dynamic model
and the observations are functions of the hidden state and some
random perturbations that can be interpreted as noise. It is well
known that when the state-space model is linear and with additive
Gaussian noise, the optimal solution of the tracking is obtained by
Kalman filtering [1]. The problem gets much more challenging when
the model becomes nonlinear and/or the noises in the system are
non-Gaussian. A class of methods that has risen to address these
challenges is known as particle filtering. It is based on tracking the
relevant densities describing the unknown state by discrete random
measures composed of particles and their weights [2].

It is now well understood that particle filtering produces an
approximation error that usually increases exponentially with the
dimension of the state variable [3]. This problem is known as curse-
of-dimensionality. In many science and engineering fields including
geophysical sciences [4], evolutionary biology [5], robotics [6],
and computational neuroscience [7], models with high-dimensional
states are common and the use of particle filtering there may often
be prohibited. There are two key issues that cause the curse-of-
dimensionality. One is the difficulty of generating good samples
in a high-dimensional space. The other is the computation of the
likelihoods [8].
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Recently, however, it has been argued that in principle, one may
develop local particle filtering algorithms whose approximation error
is dimension-free [9]. This is the same argument that we have used
in a series of papers where we have studied multiple particle filtering
[10, 11, 12, 13, 14, 15]. Namely, most of the processes of interest
have an intrinsic sparsity in the sense that any given small subset of
states of the system depends only on another very small subset of the
states. A similar statement can be made about the measurements.
In other words, a given measurement is a function of only a small
subset of the states. This sparsity opens up possibilities for particle
filtering that can alleviate the curse-of-dimensionality. One of them
is to use a number of particle filters, where each particle filter is
assigned to track a separate small subset of the unknowns. In doing
so, the various particle filters communicate information about the
states that they track. Since these individual particle filters operate
in much smaller dimensional state-spaces, they are not affected by
the overall high-dimensional state-space.

The main contribution of the paper is in the novel way of
implementing the information provided by the relevant filters to a
given filter. The filters only communicate means and covariances of
the states that they track. A given filter needs information from two
sets of particle filters. The first set are filters whose states are needed
by the given filter for propagation of its particles. The second set is
composed of filters whose states are necessary to the given filter to
compute the likelihoods of its particles. The novelty in the proposed
approach is in the way how the communicated information by the
filters is efficiently used.

The paper is organized as follows. In Section 2, we formulate
the problem. The novel scheme is described in Section 3. Simulation
results are presented in Section 4. Final conclusions are made in
Section 5.

2. PROBLEM FORMULATION

We study dynamic systems that are modeled according to

xt = f(xt−1, ut), (1)
yt = g(xt, vt), (2)

where t = 1, 2, · · · is a time index, xt ∈ Rdx is the state of the
system that evolves as a first-order Markov process, yt ∈ Rdy

is an observation at time t, f(·) and g(·) are known functions
which in general are nonlinear, and ut ∈ Rdu and vt ∈ Rdv are
random perturbations. The symbol dz represents the dimension of
the variable z in the subscript of d. The probability distribution
functions of ut and vt are assumed known, and ut and vt are
independent for all t. Furthermore, the samples of ut and vt are
independent from their previous samples.
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We are interested in systems with high-dimensional states where
there is sparsity in the interdependence among the states, and among
the observation and the states. In simple terms, we study systems
where, for example, in (1) the first state depends only on itself and a
very few of the other states from the previous time instant. Similar
relationships exist for the other states. Likewise, an element from yt
depends only on a small subset of the states. To emphasize this, we
decompose the system in (1) into K subsystems and write

xk,t = fk(xk,t−1, qk,t−1, uk,t), (3)
yk,t = gk(xk,t, zk,t, vk,t), (4)

where k = 1, 2, · · ·K, and where the subsystems do not share states
but may share observations. The function fk(xk,t−1, qk,t−1, uk,t)
shows how the state xk,t evolves with time and qk,t−1 is a small
subset of the remaining states of the system that are needed for
the evolution. The symbol yk,t represents the collection of all
the observations which are functions of xk,t (and possibly other
states). The function gk(xk,t, zk,t, vk,t) represents the signal in the
observation, where the signal, in general, depends not only on the
desired state xk,t but also on a subset zk,t of the remaining states of
the system. We reiterate that the substate vectors xi,t and xj,t with
i 6= j do not share elements but the vectors yi,t and yj,t with i 6= j
may share them.

The aim is to sequentially estimate the marginal posteriors of
xk,t, p(xk,t|yk,1:t). Thus, instead of one filter that would process all
the data, we want to use K filters, each of them assigned to estimate
the marginal posterior of a different state vector xk,t. Each of the
filters operates in a state-space of dimension dxk , which is much
smaller than dx. Since the functions fk(·) and gk(·) are in general
nonlinear, we want to estimate marginal posteriors with particle
filtering. Given that the overall system contains many particle filters,
we refer to it as a multiple particle filtering system.

3. MULTIPLE PARTICLE FILTERING WITH IMPROVED
EFFICIENCY AND PERFORMANCE

We first provide the necessary operations that each filter needs
to implement at every time instant t. We focus on the kth
filter. Its objective is to sequentially obtain p(xk,t|yk,1:t) from
p(xk,t−1|yk,1:t−1). We write

p(xk,t|yk,1:t) ∝ p(yk,t|xk,t)p(xk,t|xk,t−1, yk,1:t−1)

= p(yk,t|xk,t)
∫
p(xk,t|xk,t−1)p(xk,t−1|yk,1:t−1)dxk,t−1, (5)

where ∝ stands for “proportional to.” In a particle filtering scheme,
the posterior p(xk,t−1|y1:t−1) is represented by a discrete random
measure given by

pM (xk,t−1|yk,1:t−1) =

M∑
k=1

w
(m)
k,t−1δ

(
xk,t−1 − x(m)

k,t−1

)
, (6)

where δ(·) is the Dirac delta function, x(m)
k,t−1 are particles of xk,t−1,

m is the index of the particle, M is the total number of particles,
and w(m)

k,t−1 is the weight corresponding to x(m)
k,t−1. This makes the

implementation of (5) rather easy.
The problem for implementation of the previous filter is that

its transition probability density function (pdf) p(xk,t|xk,t−1) and
likelihood p(yk,t|xk,t) do not depend only on xk,t−1 and xk,t,
respectively. This entails that the different particle filters need to
communicate information among themselves. In particular, since

the kth particle filter uses a transition pdf p(xk,t|xk,t−1, qk,t−1),
it needs to get information from the particle filters that are in
charge of the states that form qk,t−1. Similarly, due to the form
of p(yk,t|xk,t, zk,t), this filter needs information from all the filters
whose states are elements of zk,t.

In this paper, we investigate particle filters and therefore we have
a choice that the necessary exchanged information is provided in
terms of particles (and possibly weights) of the states or in terms of
moments of the states. As the aim of this paper is to study an efficient
multiple particle filtering system, we examine the case when these
filters only communicate the mean and the covariance of their state
estimates. In a system where there may be dozens or hundreds of
particle filters, this choice would prove considerably simpler.

It is well known that a standard particle filtering scheme is
composed of three steps, particle propagation, weight computation
and resampling. Here we focus on the steps of particle propagation
and weight computation. The propagation is critical for good
performance, because one needs to generate “good” particles, that is,
particles from the space of xk,t where the probability masses are not
negligible. A standard procedure, which is rather simple and works
remarkably well is to draw samples from the transition density, i.e.,

x
(m)
k,t ∼ p(xk,t|x(m)

k,t−1). (7)

In the case of multiple particle filtering, the problem of this scheme
is that we do not have the form of p(xk,t|x(m)

k,t−1) but instead we have

to work with p(xk,t|x(m)
k,t−1, qk,t−1). A formal way of obtaining

p(xk,t|x(m)
k,t−1) from p(xk,t|x(m)

k,t−1, qk,t−1) is to use

p(xk,t|x(m)
k,t−1) =

∫
p(xk,t|x(m)

k,t−1, qk,t−1)p(qk,t−1)dqk,t−1, (8)

where p(qk,t−1) is the distribution of the states qk,t−1 at time t− 1.
We assume here that this distribution is Gaussian with mean and
covariance provided by the particle filters that feed the kth filter with
information, which we denote byN (µk,Σk). An alternative way of
dealing with this problem is to work with (3), and treat both qk,t−1

and uk,t as random quantities. Then it may be possible to obtain the
required transition pdf p(xk,t|xk,t−1) directly. Once obtained, one
can generate the particles from (7). We provide a simple example to
explain the procedure. Let

x1,t = ax1,t−1 + bx2,t−1 + u1,t, (9)

where all the variables are scalars. If we treat x2,t−1 as a random
variable, we rewrite (9) as

x1,t = ax1,t−1 + ũ1,t, (10)

where

ũ1,t = bx2,t−1 + u1,t, (11)

can be viewed as a modified noise variable. We need p(x1,t|x(m)
1,t−1),

and so if we assume that

x2,t−1 ∼ N (µ2,t−1, σ
2
2,t−1), (12)

u1,t ∼ N (0, σ2
u), (13)

we get that the “noise” ũ1,t is Gaussian characterized as

ũ1,t ∼ N (bµ2,t−1, b
2σ2

2,t−1 + σ2
u). (14)
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Thus, the pdf p(x1,t|x(m)
1,t−1) is Gaussian, or more precisely,

p(x1,t|x(m)
1,t−1) = N (ax

(m)
t−1 + bµ2,t−1, b

2σ2
2,t−1 + σ2

u). (15)

Thus, one can proceed with direct sampling of x(m)
1,t from the pdf in

(15).
Often, however, it will be difficult to obtain a closed

form of p(xk,t|x(m)
k,t−1) in this manner. In that case, the

procedure is a bit more computationally intensive in that one first
generates samples q(m)

k,t−1 from a Gaussian whose parameters are

obtained from the other particle filters and then draws x(m)
k,t from

p(xk,t|x(m)
k,t−1, q

(m)
k,t−1). We point out that we could have applied the

same procedure in the above example, with the difference being that
it is computationally less efficient. In its implementation we draw
more particles.

The situation is more critical in the computation of the weights
of the particles. Under the assumption that the particles were
propagated according to p(xk,t|xk,t−1) and that resampling was
performed at t − 1, the computation of the weights amounts to
evaluating

w
(m)
k,t ∝ p(yk,t|x(m)

k,t ). (16)

Again we have a problem because we do not have the form
of the likelihood p(yk,t|x(m)

k,t ) but instead p(yk,t|x(m)
k,t , zk,t). A

straightforward way of handling the problem is to obtain the required
likelihood via

p(yk,t|x(m)
k,t ) =

∫
p(yk,t|x(m)

k,t , zk,t)p(zk,t)dzk,t. (17)

An equivalent approach is to work with (4) and treat zk,t as a random
variable. The information about zk,t is obtained from the relevant
particle filters and it represents the moments of the propagated
particles of the reporting filters. The procedure to obtain the form of
p(yk,t|x(m)

k,t ) is the same as the one described by the above example.
Basically, we deal with transformation of random variables where
the objective is to obtain the distribution of the new noise random
variable.

Very often, the function in (4) has the form

yk,t = gk(xk,t, zk,t) + vk,t, (18)

where vk,t ∼ N (0,Σk). Note that we have to compute from
(18) the likelihood of x(m)

k,t . In the case when it is not possible to
straightforwardly obtain a closed form of the likelihood, one may
resort to an approximation. If we assume that the likelihood is
Gaussian, we only need to obtain E(yk,t|x(m)

k,t ) and Cov(yk,t|x(m)
k,t ).

We recall that our interest is in systems where the observations
are nonlinear functions of the states and therefore it will not be
always possible to obtain the exact likelihood. If we resort to
approximated likelihood, we need to find the approximated mean
and covariance. There are various ways of obtaining them, and
one standard approach is to employ a Taylor expansion of the
nonlinear function gk(x

(m)
k,t , zk,t) around the mean of zk,t. Again,

for simplicity, let yk,t and zk,t be scalars and let E(zk,t) = ηk,t and
Var(zk,t) = σ2

k,t. Then we can find the needed mean and variance
readily by [16]

E(yk,t|x(m)
k,t ) ≈ gk(x

(m)
k,t , ηk,t) +

1

2
g′′k (ηk,t)σ

2
k,t,

(19)

Var(yk,t|x(m)
k,t ) ≈

∣∣g′k(ηk,t)
∣∣2 σ2

k,t + σ2
v, (20)

where g′k(·) and g′′k (·) are the first and second derivatives of
gk(x

(m)
k,t , zk,t) with respect to zk,t, respectively.

4. SIMULATION RESULTS

We present simulation results that show the validity of the new
approach. In particular, we discuss two scenarios. In the first one,
a linear system coupled in both state and observation equations is
considered. The justification for that example is not only to exhibit
the advantage of the new method over the standard particle filter
but also to show its close performance to the bound imposed by the
Kalman filter, which is the optimal solution for that case. The second
example is a system also coupled in both state and observation
equations, with nonlinearities in the observations. The obtained
results clearly show a better performance of the proposed method
over the standard particle filter. In both examples, K = dx.
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Fig. 1. Averaged MSE comparison for the linear example.

4.1. Linear example

We considered a system with the following state equations:

x1,t = .7x1,t−1 − .3xdx,t−1 + u1,t

x2,t = .7x2,t−1 − .3x1,t−1 + u2,t

...
xdx,t = .7xdx,t−1 − .3xdx−1,t−1 + udx,t, (21)

where ui,t, i = 1, · · · , dx were independent and identically
distributed zero-mean Gaussian perturbations with variance σ2

ui
=

1. The observations were also linear and given by

y1,t = 2x1,t + x2,t + v1,t

y2,t = 2x2,t + x3,t + v2,t

...
ydx,t = 2xdx,t + x1,t + vdx,t, (22)

with vi,t being independent zero-mean Gaussian random variables
of variance σ2

vi = 1. We note that at each time instant there
were as many observations as parameters in the state and that each
component of the state vector participated in two observations, i.e.,
at time instant t, the ith component (i > 1) of the state, xi,t,
contributed to yi,t and yi−1,t, whereas x1,t = 1 was present in the
measurements y1,t and ydx,t.
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We let the system evolve for T = 100 time units and set the size
of the state to dx = 50. We compared the Kalman filter (labeled
as KF), the standard particle filter (labeled as SPF), which generated
particles of dimension dx at each step, and the new multiple particle
filter (labeled as MPF), which used dx filters of dimension 1, i.e.,
one filter per dimension of the state. The standard particle filter
and the multiple particle filter generated M = 100 particles per
dimension of the state. To deal with the coupling of the states given
in equation (21), the filters exchanged the means and variances of
their particles at the previous time instant. Therefore, all the particles
of a given filter were propagated using the same information (mean
and variance) from the coupled state. An identical approach was
used to deal with the coupling of the observations while computing
the likelihoods of the particles. However, in this case the filters
exchanged the means and variances of their particles calculated once
the propagation step was completed but before the computation of
the particle weights.

Figure 1 shows the mean square error (MSE) of the state
calculated from 1000 realizations of the system and averaged over
all the states. It is obvious that the traditional particle filtering
suffers from the large dimension of the state. We note the large
difference in performance between the standard particle filter and
the new multiple particle filter. The latter achieves a performance
very close to the bound given by the Kalman filter.
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Fig. 2. Tracking one randomly chosen state variable in one of
the realizations from the nonlinear example. Top: SPF vs. True
trajectory. Bottom: MPF vs. True trajectory.

4.2. Nonlinear example

We considered the same state equation as in the previous example
given by expression (21), and a set of nonlinear observations
formulated as

y1,t = x2,t + e
x1,t
2 v1,t

y2,t = x3,t + e
x2,t
2 v2,t

...

ydx,t = x1,t + e
xdx,t

2 vdx,t, (23)

with vi,t denoting independent zero-mean Gaussian random
variables of variance σ2

vi = 1. Again, at each time instant there
were as many observations as states and each component of the state
vector participated in two observations.

We set T = 100 time units, dx = 50 as the state dimension,
and compared the standard and multiple particle filters that used
M = 100. Figure 2 shows the tracking of one randomly chosen
state variable in one particular realization by both algorithms and
compares their results with the true trajectory. It is easy to note
that the multiple particle filter tracks the trajectory more accurately
than the standard one. Finally, Fig. 3 displays the MSE calculated
from 1000 realizations and averaged over all the states. The results
confirm that the multiple particle filter clearly outperforms the
standard one.
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Fig. 3. Averaged MSE comparison for the nonlinear example.

5. CONCLUSION

In this paper we proposed an approach for implementing multiple
particle filtering that is both efficient and accurate. The states of
the system are tracked by a number of particle filters, where each
filter tracks a subset of the complete state. The particle filters convey
information to relevant particle filters about their tracking in the form
of mean and covariance of their subset of states. This information by
the receiving particle filter is then readily used by them to propose
particles in a computationally efficient way and more importantly, to
compute accurately the likelihoods of their particles. The proposed
methodology is demonstrated by computer simulations.
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