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ABSTRACT

This paper considers inference on the widely used state-space mod-
els described by hidden ARMA state processes of unknown order
observed via non-linear functions of the states. We propose a parti-
cle filtering method for sequentially inferring the unknown ARMA
time-series by Rao-Blackwellization of all the static unknowns. Our
method does not rely either on any assumption on the model order or
on the static ARMA and state innovation parameters. Consequently,
when the ARMA model order is unknown, it can be used without a
follow-up model selection procedure. Extensive simulation results
validate the proposed method across different ARMA models.

Index Terms— State-space models, time-series, ARMA mod-
els, particle filtering, Rao-Blackwellization.

1. INTRODUCTION

This paper considers the processing of observations that are func-
tions of a hidden signal. The objective is to estimate the unknown
time-varying signal xt, given the observations yt. Models that de-
scribe this setting are known as state-space models, and they are of-
ten used in many signal processing applications, including speech
processing, communications, finance and neuroscience [1]. It is not
surprising then that the inference of the hidden states in state-space
models has been a widely studied problem. In the case of linear
state-space models with additive Gaussian noises, the optimal solu-
tion is the celebrated Kalman filter [2]. When the models deviate
from the assumptions of linearity and Gaussianity, the processing of
the data under such models requires alternative solutions. Sequential
Monte Carlo methods, also known as particle filters (PFs), are one
of the alternatives. They already have a nice track record in diverse
disciplines [3, 4, 5]. Motivated by applications in finance engineer-
ing such as representation of asset returns [6, 7] or in neuroscience
in the analysis of neural signals [8], we are interested in inference of
hidden linear time series observed through non-linear functions.

In this paper, the time-dependency of the hidden signal is char-
acterized by an Autoregressive Moving-Average (ARMA) model,
where the current state depends on both the previous values of the
signal and a state noise (i.e., innovations). Due to its flexible pa-
rameterization, the ARMA model can be fit to any linear time series
with high accuracy. An ARMA process is described as ARMA(p, q),
where p is the order of the auto-regressive (AR) part, and q, the order
of the moving-average (MA) part. Due to the non-linearities induced
by the MA part, the sequential estimation of the hidden states mod-
eled as ARMA processes is challenging. Besides, if the observations
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are also non-linear functions of the states, one has to look for tech-
niques that can handle such non-linearities. Particle filtering meth-
ods have the capacity to overcome these challenges. Dealing with
unknown state parameters does nothing but complicate the problem
further, as PF methods require special care in handling them. Finally,
in practice, we usually have no knowledge of the model orders p and
q, which confounds the problem additionally. The latter entails that
one would need to invoke some model selection procedure as part of
the estimation process.

Most of the literature on PFs has focused on AR state processes
with non-linear observations [9, 10, 11], where the inference has
been performed under the assumption of both known and unknown
parameters. When dealing with unknown AR parameters, the PFs
resort to joint estimation of the states and the parameters (in other
words, particles are generated for all the states and parameters [9,
12]). However, much less work can be found on applying parti-
cle filtering to state-space models with full ARMA processes in the
state equation. In [13] for example, given that the model order is
known, estimation of both the state and the ARMA parameters was
proposed, under the assumption of time-varying parameters. It is
important to recall that PFs suffer when dealing with fixed model
parameters [12] and, consequently, there has been an increasing ef-
fort to derive new methods for addressing the problem (e.g., the use
of artificial parameter evolution [14], kernel smoothing [12], or den-
sity assisted PFs [15]). Some recent work has avoided the limitations
of the parameter estimation by resorting to Rao-Blackwellization of
the nuisance parameters. The performance of these new PFs is im-
proved because the generated particles are sampled from a space that
has a reduced dimensionality. This can readily be done for AR mod-
els when the noise in the state equation is Gaussian [16]. The case of
ARMA models is more complicated, thus approximations like nu-
merical Rao-Blackwellization have been presented [17]. In all these
papers, the model orders were known.

Here, we propose a PF that analytically Rao-Blackwellizes all
the unknown ARMA parameters and the state noise. Interestingly,
the proposed Rao-Blackwellization does not require knowledge of
the model order. Thus, our method has the clear advantage in sit-
uations when the model order is unknown. Also, due to the Rao-
Blackwellization, it avoids the limitations of particle-based param-
eter estimation, and provides state estimates with reduced variance.
All in all, the suggested PF advances the state of the art because it (1)
considers general ARMA(p, q) models, (2) does not require knowl-
edge of model order, (3) does not assume knowledge of neither the
ARMA nor the state innovation parameters, and (4) resorts to the
joint Rao-Blackwellization of all the unknowns.

The rest of the paper is organized as follows. In Section 2, we
formulate the problem. We propose the new particle filtering solu-
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tion in Section 3. Section 4 contains the results of extensive com-
puter simulations where we demonstrate the performance of the pro-
posed method. We make our final conclusions in Section 5.

2. PROBLEM FORMULATION

We are interested in a general class of state-space models where the
state is modeled by a generic ARMA(p, q) process, with AR param-
eters ai, i = 1, · · · , p and MA parameters bj , j = 1, · · · , q. The
observation is a non-linear function h(xt, vt) of the state. The state-
space model is represented mathematically as follows:

xt =
∑p
i=1 aixt−i +

∑q
j=1 bjut−j + ut, state eq. (1)

yt = h(xt, vt), observation eq. (2)

where the symbols ut and vt represent white Gaussian processes in-
dependent of each other. We assume that we do not know the order
of the ARMA model. Consequently, we also do not know its pa-
rameters. Finally, the parameters of the state innovations (i.e., mean
and variance), too, are unknown. As for the observation equation,
we do not enforce any restrictions except that the function h(xt, vt)
produces a likelihood f(yt|xt) that is computable up to a propor-
tionality constant.

Given the observations y1:t ≡ {y1, y2, · · · , yt}, we want to se-
quentially estimate the posterior density of xt, f(xt|y1:t). To do
so, we resort to particle filtering [18], a well known approach for
inference in non-linear/non-Gaussian state-space models. PFs ap-
proximate the posterior density of the states given all the available
observations by

f(xt|y1:t) ≈
M∑
m=1

w
(m)
t δ(xt − x(m)

t ), (3)

where x(m)
t are particles drawn from a proposal distribution, M is

the number of particles, w(m)
t are the weights associated to the par-

ticles, and δ(·) is the Dirac delta function.
The method proceeds sequentially, i.e., f(xt|y1:t) is obtained

from f(xt−1|y1:t−1) according to

f(xt|y1:t) ∝ f(yt|xt)
∫
f(xt|x1:t−1)f(x1:t−1|y1:t−1)dx1:t−1

≈ f(yt|xt)
M∑
m=1

w
(m)
t−1f(xt|x

(m)
1:t−1). (4)

In obtaining f(xt|y1:t), the challenge is the derivation of
f(xt|x1:t−1) for an ARMA model when the parameters (p, q,
ai, bj , µu, σ

2
u) are unknown. In the next section we show how this

transition density is obtained by Rao-Blackwellization of all the
nuisance parameters.

3. THE PROPOSED METHOD

In the formulation of the problem, we have introduced state equa-
tions described by general ARMA models. For the following deriva-
tion, we assume weak-sense stationarity of the ARMA process, thus
requiring that the first and second moments exist and are constant
with respect to time: i.e., E {xt} = µ and Cov(xt, xt−τ ) = γ(τ).
These conditions imply that the mean does not vary with time and
that the autocovariance of the process is a function only of the time-
difference and not the actual time instants.

For such stationary ARMA models, the joint distribution of the
series at time instant t can be written as

f(x1:t|µt,Σt) = f(xt|µt,Σt) = N (µt,Σt), (5)

with



xt =
(
xt xt−1 xt−2 · · · x2 x1

)>
µt = µ1t

Σt =


γ(0) γ(1) γ(2) ··· γ(t−1)
γ(1) γ(0) γ(1) ··· γ(t−2)
γ(2) γ(1) γ(0) ··· γ(t−3)

...
...

...
. . .

...
γ(t−1) γ(t−2) γ(t−3) ··· γ(0)

 ,

where 1t is a t× 1 vector of ones andN (µt,Σt) represents a mul-
tivariate Gaussian distribution with a mean vector µt and covariance
matrix Σt. Due to stationarity, the mean µt is equal for all time in-
stants with its value µ being dependent on the state noise mean µu
and the ARMA parameter set (ai, bj , p, q). Similarly, the covariance
matrix Σt is a function of the time-lag τ = {0, 1, · · · , t − 1}, the
ARMA parameter set and the state noise variance σ2

u.
Whenever the parameters of the model are unknown, the deter-

mination of these sufficient statistics is not possible. Since the goal
is to infer the hidden state xt and we consider the parameters to
be of secondary importance (they are nuisance), we resort to Rao-
Blackwellization.

Let us assume the following hierarchical parametric model for
the vector xt of an ARMA(p, q) process at time instant t:

f(Σt|Λt, νt) = IWνt (Λt) , (6)

f(µt|ηt,Σt, κt) = N
(
ηt,

Σt

κt

)
, (7)

f(µt,Σt|ηt, κt,Λt, νt) = NIW (ηt, κt,Λt, νt) , (8)
f(xt|µt,Σt) = N (µt,Σt), (9)

where IWνt (Λt) is the inverse Wishart distribution with a scale ma-
trix Λt and νt ≥ t degrees of freedom, and NIW (ηt, κt,Λt, νt) is
the normal-inverse-Wishart distribution with location ηt, an inverse
scale matrix Λt, and real parameters κt > 0 and νt.

We now proceed with deriving the Rao-Blackwellized distribu-
tion of the joint state (the integration details can be found in [19] and
[20]). We write

f(xt) =

∫
Σt

∫
µt

f(xt|µt,Σt)f(µt,Σt|ηt, κt,Λt, νt)dµtdΣt

= Tνt−t+1

(
ηt,

Λt(1 + κt)

κt(νt − t+ 1)

)
,

(10)

where Tνt−t+1

(
ηt,

Λt(1+κt)
κt(νt−t+1)

)
stands for a multivariate t-distribution

where ηt is its location vector, Λt(1+κt)
κt(νt−t+1)

is the scale matrix, and
νt − t+ 1 represents the degrees of freedom.

Let us further rewrite the obtained joint multivariate t-distribution
as [

xt
xt−1

]
∼ Tνt−t+1

(
ηt,

Λt(1 + κt)

κt(νt − t+ 1)

)
, (11)

with parameters


ηt =

[
ηt

ηt−1

]

Λt =

[
λt l>t
lt Lt

]
.
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Next, we write the conditional density f(xt|x1:t−1) and obtain [19]

f (xt|x1:t−1) = Tνt−t+2

(
µt|1:t−1, σ

2
t|1:t−1

)
, (12)

with
µt|1:t−1 = η + l>t L−1

t

(
xt−1 − ηt−1

)
σ2
t|1:t−1 =

ht|1:t−1(1+κt)

κt(νt−t+1)

(
λt − l>t L−1

t lt
)

ht|1:t−1 = νt−t+1
νt

[
1 +

κt(xt−1−ηt−1)
>

(1+κt)
L−1
t

(
xt−1 − ηt−1

)]
.

We have thus shown that the transitive density of the Rao-
Blackwellized ARMA time series is a Student’s t-distribution, de-
pendent on a set of hyper-parameters ηt, Λt, κt and νt. To provide
meaningful values for these parameters, we resort to the Empirical
Bayes Method [21]. Namely, we estimate the hyperparameters from
the available data. Furthermore, we leverage the stationarity of the
ARMA model to yield accurate estimation of the hyperparameters.
Specifically, we compute the prior mean and covariance as (a) the
empirical stationary mean x̂t and, (b) the Toeplitz matrix formed by
the empirical autocovariance function γ̂(τ), τ = {0, 1, · · · , t− 1},
respectively. More precisely, we use

ηt = x̂t1t,

where x̂t = 1
t

∑t
i=1 xi,

Λt =


γ̂(0) γ̂(1) γ̂(2) ··· γ̂(t−1)
γ̂(1) γ̂(0) γ̂(1) ··· γ̂(t−2)
γ̂(2) γ̂(1) γ̂(0) ··· γ̂(t−3)

...
...

...
. . .

...
γ̂(t−1) γ̂(t−2) γ̂(t−3) ··· γ̂(0)


where γ̂(τ) = 1

t−τ
∑t−τ
i=1 (xi − x̂) (xi+τ − x̂) .

A lower bound for the hyperparameters κt and νt is provided by
the dimensionality of the estimation problem. We must have κt ≥ 1
and νt ≥ t (as we are estimating t autocovariance values).

Finally, we note that the size of the covariance matrix increases
with time (i.e., the dimensionality of the matrix is time dependent).
Since this will impose a computational burden for long time series,
an alternative is to truncate the covariance matrix to a predefined
maximum lag τmax. This truncation is justified by the short memory
nature of ARMA processes, as most of the information is contained
in few of the last samples. Even if the exact form of the covariance
matrix for the ARMA(p, q) is in general intractable ([22], [23]), we
can assert the following for the autocovariance function’s form [1]:

• For AR processes, it decays exponentially.

• For MA processes, it is zero after the first q lags.

• For the general ARMA(p, q), it decays exponentially for lags
bigger than m = max(p, q).

We can therefore safely restrict our analysis of the covariance to a
predetermined dimensionality τmax >> m.

3.1. Particle Filter

Based on the above derivation of the Rao-Blackwellized tran-
sition density, we now present how to implement the PF. Let
us assume that at time instant t, we have the random measure
χt =

{
x
(m)
t , w

(m)
t

}
, where m = 1, · · · ,M. Then we proceed as

follows:

1. Estimate the stationary sufficient statistics at time t:
x̂t

(m) = 1
t

∑
i x

(m)
i

γ̂(τ)(m) = 1
(t−τ)

∑t−τ
i=1

(
x
(m)
i − x̂t(m)

)(
x
(m)
i+τ − x̂t

(m)
)

where τ = {0, 1, · · · , t− 1}.

2. Perform resampling of the state (to avoid sample degeneracy)
by drawing from a categorical distribution defined by the ran-
dom measure χt:

x
(m)
t ∼ χt, where m = 1, · · · ,M.

3. Propagate the particles by sampling from the conditional den-
sity, given the resampled streams:

x
(m)
t+1 ∼ f(xt+1|x(m)

1:t ) = Tνt+1−t+1

(
µ
(m)

t+1|1:t,
(
σ
(m)

t+1|1:t

)2)
,

with parameters
µt+1|1:t = x̂t

(m) + l>t+1L
−1
t+1 (xt − ηt)

σ2
t+1|1:t =

ht+1|1:t(1+κt+1)

κt+1(νt+1−t)

(
λt+1 − l>t+1L

−1
t+1lt+1

)
ht+1|1:t =

νt+1−t
νt+1

[
1 +

κt+1(xt−ηt)
>

(1+κt+1)
L−1
t+1 (xt − ηt)

]
,

where

ηt = x̂t1t

λt+1 = γ̂(0)(m)

l>t+1 =
(
γ̂(1)(m) γ̂(2)(m) · · · γ̂(t− 1)(m) 0

)
lt+1 =

(
γ̂(1)(m) γ̂(2)(m) · · · γ̂(t− 1)(m) 0

)>
Lt+1 =


γ̂(0)(m) γ̂(1)(m) ··· γ̂(t−2)(m) γ̂(t−1)

γ̂(1)(m) γ̂(0)(m) ··· γ̂(t−3)(m) γ̂(t−2)

...
...

. . .
...

...
γ̂(t−2)(m) γ̂(t−3)(m) ··· γ̂(0)(m) γ̂(1)(m)

γ̂(t−1)(m) γ̂(t−2)(m) ··· γ̂(1)(m) γ̂(0)(m)

 .

4. Compute the non-normalized weights for the drawn particles
according to

w̃
(m)
t+1 ∝ f(yt+1|x(m)

t+1),

and normalize them to obtain a new random measure

χt+1 =
{
x
(m)
t+1, w

(m)
t+1

}
.

4. SIMULATION RESULTS

We evaluate the proposed method on the following stochastic volatil-
ity model:

xt =

p∑
i=1

aixt−i +

q∑
j=1

bjut−j + ut, (13)

yt = e(xt/2)vt, (14)

where the log-volatility xt is an ARMA(p, q) process and the driving
noises are independent and identically distributed standard Gaussian
processes. This is a challenging problem not only because of the hid-
den unknown ARMA process, but also because of the nonlinearity
in the observation equation: the goal is to estimate the log-volatility
of a random process. Nevertheless, we show that the proposed PF
successfully tracks xt for different ARMA(p, q) models. Figure 1
shows the tracking results for a particular run of the following pro-
cesses, each evolving for 200 time units:
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Fig. 1: Estimation (solid-red) of the hidden state (dotted-black)

• ARMA(1,1):
xt = 0.9xt−1 + ut + 0.3ut−1.

• ARMA(2,2):
xt = 0.8xt−1+0.15xt−2+ut+0.5ut−1+0.3ut−1.

• ARMA(4,2):
xt = 0.6xt−1 + 0.2xt−2 + 0.05xt−3 + 0.1xt−4

+ut + 0.5ut−1 + 0.3ut−1.

Regarding the covariance truncation approach suggested in Section
3, the results shown in Fig. 2 endorse our proposal to truncate the
autocovariance to a maximum lag (e.g., τmax ≈ 15). The figure
shows the MSE of the estimated process (for different ARMA model
orders) as a function of τmax. The results were obtained from 50 re-
alizations with 500 particles. Not only the computational burden is
dramatically reduced (time savings of more than an order of mag-
nitude observed in our simulations), but (a) the autocovariance esti-
mation becomes more reliable and (b) in predicting the next sample,
the information gain provided by samples further in the past proves
to be negligible.
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Fig. 2: Covariance truncation influence on ARMA MSE

Figure 2 also allows us to conclude that the performance of our
suggested PF is consistent across different ARMA(p, q) models. Be-
cause no model order is assumed, the suggested PF provides good
estimation accuracy independent of the model order. The explana-
tion is that the information about xt is solely extracted from the es-
timated covariance and past states. In doing so, we avoid exploring

the parameter space with particles. As a result, the proposed method
is much less sensitive to the curse of dimensionality.

In order to further illustrate the benefit of a model order inde-
pendent PF, we provide a performance comparison between the pro-
posed method and a Gaussian PF where the parameters and the state
are jointly estimated, given the ARMA model order (Gauss PF).
In this example, we assume that the hidden process has a zero mean.
Thus, in our general method x̂t = 0 and κt →∞. As shown in Ta-
ble 1, the performance of our PF pays the price of not knowing the
model order, as the Gauss PF approach provides a slightly better
performance. However, the proposed method is computationally an
order of magnitude less demanding than the Gauss PF. Besides,
when the model order is unknown, one would need to apply a num-
ber of Gauss PFs (with different assumptions of model orders),
followed by a model selection procedure. Because no model order
knowledge is required, this inconvenience is avoided by our pro-
posed PF.

Table 1: PF comparison

ARMA model State estimation error (MSE)
Gauss PF Suggested PF

ARMA(1,1) 1.542 2.0693
ARMA(1,2) 2.2353 2.1961
ARMA(2,1) 1.8744 2.1588
ARMA(2,2) 1.6844 1.930
ARMA(2,4) 1.4482 1.8029
ARMA(3,1) 1.5831 1.9982
ARMA(3,2) 1.456 2.0118
ARMA(3,3) 1.0376 1.3216
ARMA(4,2) 1.6928 2.1136

5. CONCLUSIONS

We have proposed a new particle filter that tracks a hidden ARMA
process of unknown order and parameters in the presence of non-
linear observations. The method is based on the Rao-Blackwellization
of the static ARMA and state innovation parameters. Furthermore,
the method does not require knowledge of the ARMA model or-
der. The presented simulation results show the validity of the pro-
posed method and suggest good estimation accuracy across different
ARMA(p, q) models. Future work includes detailed study of the
method when the state is modeled by multivariate ARMA processes.
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[4] P. M. Djurić and M. F. Bugallo, Particle Filtering, chapter 5 in
“Adaptive Signal Processing: Next Generation Solutions”, pp.
271–331, John Wiley & Sons, Inc., 2010.

[5] A. Doucet and A. M. Johansen, “A tutorial on particle filtering
and smoothing: Fifteen years later,” Handbook of Nonlinear
Filtering, vol. 12, pp. 656–704, 2009.

[6] S. T. Rachev, J. S. J. Hsu, B. S. Bagasheva, and F. J. Fabozzi,
Bayesian Methods in Finance, John Wiley & Sons, 2008.

[7] D. E. Johnston, I. Urteaga, and P. M. Djurić, “Replication and
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