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ABSTRACT

In many practical scenarios, including those dealing with
large data sets, calculating global estimators of unknown
variables of interest becomes unfeasible. A common solution
is obtaining partial estimators and combining them to approx-
imate the global one. In this paper, we focus on minimum
mean squared error (MMSE) estimators, introducing two ef-
ficient linear schemes for the fusion of partial estimators. The
proposed approaches are valid for any type of partial estima-
tors, although in the simulated scenarios we concentrate on
the combination of Monte Carlo estimators due to the nature
of the problem addressed. Numerical results show the good
performance of the novel fusion methods with only a fraction
of the cost of the asymptotically optimal solution.

Index Terms— Global estimator; partial estimator; linear
combination; fusion; Monte Carlo estimation.

1. INTRODUCTION

Estimation theory addresses the problem of inferring a set of
unknown variables of interest given a collection of observable
data [1, 2, 3]. Unfortunately, determining the global estimator
of these parameters using all the available information is often
unfeasible or impractical for many real-world scenarios. For
example, in big data applications the amount of data at hand
imposes computational and/or storage constraints that impede
the global estimation process [4]. Also, large data sets pose
a challenge for Monte Carlo estimators, since the posterior
density tends to concentrate on a relatively small space as the
number of data increases [5].

A possible alternative to global estimation reduces to di-
viding the available data into groups of manageable informa-
tion and obtaining partial estimators of the unknowns. The
objective is then to properly combine the partial estimators
to achieve the performance of the global one. Fusion of es-
timates has been widely studied in many different areas. On
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the one hand, in wireless sensor networks the focus has been
on distributed learning/estimation under communication con-
straints [6, 7] and the adaptation of methods developed for
graphical models to distributed fusion [8]. Many different
consensus, gossip or diffusion algorithms [9, 10, 11] have
been developed, but they require a significant amount of com-
munication that may constitute a burden in big data appli-
cations. On the other hand, a related field in the statistical
literature is the combination of forecasts [12]. Indeed, the
optimal linear combination for the single parameter case was
already derived in [13, 14] and a Bayesian perspective was
provided in [15]. However, there are two important differ-
ences with respect to the scenario addressed here: (1) each
forecaster is assumed to have access to the whole data set; (2)
computational complexity is not considered an issue in those
cases. Finally, there is currently a great interest in parallel
Bayesian computation using Monte Carlo methods [16], and a
few communication-free parallel Markov chain Monte Carlo
(MCMC) algorithms have been developed [17, 18, 19]. How-
ever, none of them addresses the potentially large dimension
of the optimal combiners.

The main contribution of this work is the derivation of
two novel efficient linear schemes for the fusion of partial
MMSE estimators, which are independent from the methods
used to obtain the partial estimates. The motivation comes
from the asymptotically optimal linear combination, which
involves the calculation of one weighting matrix per partial
estimator and thus may be inaccurate and computationally de-
manding for large dimensional systems (both in number of
unknowns and observations).1 In order to reduce the compu-
tational complexity, we propose two linear approaches that re-
quire only a single weighting coefficient per partial estimator
and one weighting coefficient per parameter and partial esti-
mator respectively. We apply the proposed algorithms to the
problem of target localization using measurements acquired
by more than one sensor. Monte Carlo partial estimators are
used to deal with the groups of measurements.

1Note that the optimal linear combination requires as many weighting ma-
trices (whose size depends on the number of unknowns) as partial estimators
(whose number is related to the number of observations).
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2. PROBLEM STATEMENT:
GLOBAL VS. PARTIAL ESTIMATORS

In many applications, we are interested in inferring a vari-
able of interest given a set of observations or measurements.
Let us consider the variable of interest, x ∈ X ⊆ RD×1,
and let y ∈ Y ⊆ RN×1 be the observed data. The poste-
rior probability density function (PDF) (i.e., the conditional
PDF of the variables of interest given the data) is p(x|y) =

1
Z(y)π(x,y) ∝ π(x,y), where Z(y) is the model evidence
(a.k.a. partition function) and π(x,y) is the joint PDF of x
and y. A common approach for the estimation of x given
y is trying to find an estimator, x̂ = f(y), that minimizes
the mean squared error (MSE). Mathematically, the minimum
mean squared error (MMSE) estimator of x is obtained as

x̂(MMSE) = arg min
x̂

MSE(x̂|y), (1)

where

MSE(x̂|y) = E
(
(x̂− x)>(x̂− x)

)
=

∫
X

(x̂− x)>(x̂− x)p(x|y)dx. (2)

Note that solving (1) is equivalent to minimizing the Bayesian
risk under a quadratic loss function. It is well-known that the
MMSE estimator is given by the conditional mean [1, 2, 3]:

x̂(MMSE) = E(x|y) =

∫
X

x p(x|y)dx. (3)

Unfortunately, obtaining this global estimator is often un-
feasible or impractical. A possible solution then consists of
splitting the data intoL groups/clusters, so that the `-th cluster
(1 ≤ ` ≤ L) only has access to N` samples. In this situation
we can obtain the partial MMSE estimator for each cluster
(i.e., the MMSE estimator of x given all the data available to
the `-th estimator, y`) as

x̂
(MMSE)
` = arg min

x̂`

MSE(x̂`|y`), (4)

where

MSE(x̂`|y`) =

∫
X

(x̂` − x)>(x̂` − x)p`(x|y`)dx, (5)

and p`(x|y`) denotes the partial posterior induced by the `-th
subset of data, y`. Like the global MMSE estimator given
by (3), the partial MMSE estimator corresponds to the condi-
tional mean given the `-th subset of data:

x̂
(MMSE)
` = E(x|y`) =

∫
X

x p`(x|y`)dx. (6)

The objective is obtaining the global MMSE estimator from
the set of partial MMSE estimators.

3. ASYMPTOTICALLY OPTIMAL COMBINATION
OF PARTIAL ESTIMATORS

In general, the MMSE estimator is a non-linear function of
the whole data set and the exact global MMSE estimator can-
not be attained by any combination of partial MMSE estima-
tors.2 However, the Bernstein-von Mises (a.k.a. Bayesian
central limit) theorem states that, under suitable regularity
conditions, the partial posterior PDFs, p`(x|y`), converge to
Gaussian PDFs as N` tends to infinity [20, 21], i.e.,

p`(x|y`)→ N (x|µ(`)
x ,C(`)

x ) as N` →∞, (7)

with N (x|µ(`)
x ,C

(`)
x ) indicating that x has a Gaussian PDF

with a mean vector µ(`)
x = x̂

(MMSE)
` and a covariance matrix

C(`)
x = E

(
(x̂

(MMSE)
` − x)(x̂

(MMSE)
` − x)>

)
=

∫
X

(x̂
(MMSE)
` − x)(x̂

(MMSE)
` − x)>p`(x|y`)dx. (8)

Assuming that we have independent (though not necessarily
identically distributed) observations and that each of them can
only belong to one cluster (i.e., we have disjoint sets of sam-
ples such that N =

∑L
`=1N`), the global posterior PDF also

converges to a Gaussian PDF as N tends to infinity, i.e.,

p(x|y) =

L∏
`=1

p`(x|y`) = N (x|µx,Cx) as N →∞,

(9)
with

Cx =

[
L∑

`=1

(
C(`)

x

)−1]−1
, (10a)

µx = Cx

L∑
`=1

(
C(`)

x

)−1
x̂
(MMSE)
` . (10b)

This result has been recently exploited in [18] to obtain
asymptotically exact samples from the global posterior using
a parallel MCMC algorithm.

4. EFFICIENT LINEAR COMBINATION OF
PARTIAL ESTIMATORS

4.1. Asymptotically Optimal Combination

Let us consider a linear fusion approach, where the global
estimator is obtained as a weighted linear combination of the
partial MMSE estimators:

x̂(LMSE) =

L∑
`=1

Λ`x̂
(MMSE)
` , (11)

2An exception occurs when the global MMSE estimator is “separable in
the data”. For instance, this happens when the global posterior PDF is Gaus-
sian with a mean that is a weighted linear combination of the data. In this
case, a properly weighted linear combination of the partial MMSE estima-
tors leads to the exact global MMSE estimator.
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where Λ` is a D×D matrix of weights. Noting that the MSE
in (2) can be alternatively expressed as

MSE(x̂|y) = Tr
(
E
(
(x̂− x)(x̂− x)>

))
, (12)

it is straightforward to show that the MSE of (11) is given by

MSE(x̂(LMSE)|y) =

L∑
`=1

Tr
(
Λ`C

(`)
x Λ>`

)
, (13)

where Tr(A) denotes the trace of matrix A and C
(`)
x is given

by (8). Given the L partial MMSE estimators, the best linear
unbiased global estimator is obtained solving the following
constrained optimization problem:

Λ∗ = arg min
Λ

L∑
`=1

Tr
(
Λ`C

(`)
x Λ>`

)
, (14a)

s.t.
L∑

`=1

Λ` = I, (14b)

where Λ = [Λ1, . . . , ΛL], (14a) corresponds to a standard
MSE minimization problem and (14b) is required to guaran-
tee that the resulting global estimator is unbiased. Applying
the method of Lagrange multipliers [22], we obtain the solu-
tion for each of the weight matrices as3

Λ` =

[
L∑

k=1

(
C(k)

x

)−1]−1 (
C(`)

x

)−1
= Cx

(
C(`)

x

)−1
.

(15)
Substituting (15) into (11), we note that the LMSE estima-
tor is given exactly by (10b), i.e., x̂(LMSE) = µx. Thus, the
LMSE estimator is asymptotically optimal as N →∞.

4.2. Restricted Linear Combination

Unfortunately, the LMSE estimator described in the previous
section requires obtaining a D×D weighting matrix for each
of the L partial estimators. In practice, this implies estimating
D2L parameters overall. When D is large this can be prob-
lematic in terms of statistical accuracy (especially when N is
not so large compared to D2L) and results in high computa-
tional and storage costs.

In order to reduce the number of parameters to be esti-
mated, here we consider a restricted LMSE estimator, where
a single coefficient per partial estimator is used to construct
the global estimator. This single coefficient MSE (SCMSE)
estimator is given by4

x̂(SCMSE) =

L∑
`=1

α`x̂`
(MMSE), (16)

3See our technical report for a detailed derivation of the coefficients in
Sections 4.1 and 4.2 [23].

4Note that the SCMSE estimator can be obtained by setting Λ` = α`I in
(11), with I denoting a D ×D identity matrix.

where the coefficients α` are obtained solving the following
constrained optimization problem:

α∗ = arg min
α

L∑
`=1

α2
`Tr
(
C(`)

x

)
, (17a)

s.t.
L∑

`=1

α` = 1, (17b)

withα = [α1, . . . , αL]. Using again the method of Lagrange
multipliers, the closed-form solution for the `-th weight (1 ≤
` ≤ L) is given by

α` =

[
Tr(C(`)

x )
]−1

∑L
k=1

[
Tr(C(k)

x )
]−1

=

[
MSE(x̂

(MMSE)
` |y`)

]−1
∑L

k=1

[
MSE(x̂

(MMSE)
k |yk)

]−1 , (18)

where the last expression in (18) comes directly from (12).
The SCMSE estimator has a substantially reduced com-

putational cost w.r.t. the LMSE estimator, since it only re-
quires the estimation of L parameters overall, instead of the
D2L parameters of the LMSE estimator. However, noting
that the optimal weights in (18) involve the trace of the partial
covariance matrices, we also introduce an independent lin-
ear minimum mean squared estimator (ILMSE), where Λ` =
diag(α`,1, . . . , α`,D). This approach leads to an independent
estimation of each of the D variables of interest:

x̂
(ILMSE)
d =

L∑
`=1

α`,d x̂
(MMSE)
`,d , (19)

where 1 ≤ d ≤ D and x̂(MMSE)
`,d denotes the d-th component

of the `-th partial MMSE estimator. In practice, the weights
in (19) can be obtained by solving D single parameter con-
strained optimization problems:

α∗d = arg min
αd

L∑
`=1

α2
`,dC

(`)
xd
, (20a)

s.t.
L∑

`=1

α`,d = 1, (20b)

where αd = [α1,d, . . . , αL,d]> and C(`)
xd is the d-th element

along the main diagonal of C
(`)
x . The solution is now

α`,d =

[
MSE(x̂

(MMSE)
`,d |y`)

]−1
∑L

k=1

[
MSE(x̂

(MMSE)
k,d |yk)

]−1 . (21)

This approach requires the estimation ofDL parameters over-
all, and thus it can be seen as an intermediate approach be-
tween the LMSE and the SCMSE.
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Experiment N`

Scenario Estimator 6 12 30 60 240 600 1200 3000 6000

Sc1

EWF 0.0041 0.0049 0.0065 0.0090 0.0167 0.0590 0.1192 0.2899

0.5540SCMSE 0.0039 0.0046 0.0063 0.0089 0.0166 0.0587 0.1191 0.2899
ILMSE 0.0038 0.0046 0.0063 0.0089 0.0166 0.0586 0.1188 0.2886
LMSE 0.0037 0.0045 0.0062 0.0088 0.0165 0.0584 0.1183 0.2878

Sc2

EWF 0.0087 0.0053 0.0064 0.0104 0.0343 0.0648 0.1681 0.3392

0.5540SCMSE 0.0057 0.0034 0.0047 0.0092 0.0328 0.0628 0.1623 0.3290
ILMSE 0.0052 0.0031 0.0043 0.0085 0.0304 0.0588 0.1521 0.3159
LMSE 0.0037 0.0021 0.0028 0.0057 0.0210 0.0410 0.1107 0.2406

Sc3

EWF 0.0078 0.0061 0.0068 0.0092 0.0169 0.0587 0.1181 0.2877

0.5540SCMSE 0.0060 0.0053 0.0066 0.0091 0.0168 0.0584 0.1180 0.2877
ILMSE 0.0055 0.0051 0.0065 0.0090 0.0168 0.0583 0.1177 0.2867
LMSE 0.0051 0.0048 0.0064 0.0090 0.0167 0.0582 0.1174 0.2861

Table 1. MSE (averaged over 50 independent runs) for the three scenarios and the four fusion methods considered.

5. NUMERICAL EXPERIMENTS

We address the problem of positioning a target in the two-
dimensional space of a wireless sensor network with only
range measurements [24]. More specifically, we consider a
random vector X = [X1, X2]> to denote the target’s posi-
tion in the R2 plane. The position of the target is then a
specific realization x. The measurements are obtained from
6 range sensors located at h1 = [1,−8]>, h2 = [8, 10]>,
h3 = [−15,−7]>, h4 = [−8, 1]>, h5 = [10, 0]> and h6 =
[0, 10]>. The measurement equations are given by

Yj = −20 log
(
||x− hj ||2

)
+ Θj , j = 1, . . . , 6, (22)

where Θj ∼ N (θj |0, ω2
j I), with ωj = 5 for j ∈ {1, 2, 3}

and ωj = 20 for j ∈ {4, 5, 6}. We simulate N = 6000
observations from the model (N6 = 1000 observations from
each sensor), setting x1 = x2 = 3.5. We consider a varying
number of partial estimators L, with N` = N/L observations
per estimator for 1 ≤ ` ≤ L, and three scenarios for splitting
the data:

Sc1 Exactly N
6L measurements from each sensor are pro-

vided to each partial estimator.

Sc2 The first L/2 estimators contain an equal number of
observations from the first 3 sensors (the best ones),
whereas the remaining L/2 estimators work with mea-
surements from the last 3 sensors (the noisiest ones).

Sc3 Measurements are randomly assigned to the estimators.

For each scenario, we run M (`)
C = 100 MCMC independent

parallel chains with length T (`)
C = 5000, compute the MMSE

estimates x̂(`)1 and x̂(`)2 , and fuse these estimates into the final
result. We compare the Equal Weights Fusion (EWF) method,
where each estimator is given the same weight, 1/L, and the
three fusion methods described in Section 4. The results,
shown in Table 1 and Fig. 1, confirm the good performance

of the SCME and ILMSE estimators, which outperform the
naive EWF and show an MSE similar to the optimal and more
costly LMSE. Note that the poor performance of all the esti-
mators for small values of L is due to the slower convergence
of the parallel chains when the number of data in the posterior
is large (e.g., for T (`)

C = 20000 the MSE decreases to 0.1624
when L = 1). This shows the importance of splitting the data
even when a single estimator is able to deal with them.
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Fig. 1. MSE as a function of L for scenario 2 (Sc2).

6. CONCLUSIONS AND FUTURE LINES

In this paper we have addressed the fusion of partial minimum
mean squared error (MMSE) estimators using two novel effi-
cient linear combination schemes. The methods were tested
through computer simulations by applying them to a localiza-
tion problem with one target and six sensors whose measure-
ments were processed using several parallel filters. The new
fusion methods show a similar performance to the optimal
linear combination with a reduced computational cost.
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