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Abstract—In this paper, we consider the problem of optimally
ordering information to a human subject to maximize detection
performance in a binary hypothesis testing problem. We begin
by proposing a modification of the traditional Bayesian solution
to hypothesis testing problems to incorporate the effect of human
cognitive biases. Next, we consider the problem of selecting
a subset of information to maximize detection performance
in truncated hypothesis testing problems. We then use the
solution to that problem to determine the real time ordering
of information to enhance human binary hypothesis testing. We
verify through simulations that the proposed ordering methods
with and without cognitive biases minimize the probability of
miss and the probability of false alarm.

Index — Cognitive biases, Bayesian inference, Likelihood,
Ordering, i.i.d. observations

I. INTRODUCTION

Bayesian inference models provide optimal mathematical
solution to the problem of inferring the right conclusions
based on observing data. They detect the hypothesis with
maximal odds of occurrence. However, these optimal solutions
do not capture the way human beings integrate the pieces
of information and make their decisions. Humans are subject
to several cognitive biases, which are heuristics that hinders
them from making rational decisions. It is thus important to
study modifications of Bayesian decision making under the
influence of cognitive biases, and to figure out further the best
sequencing of information for humans in order to mitigate the
biases.

For hypothesis testing, Neyman-Person test allows the detec-
tion of the hypothesis after observing N pieces of independent
information. It computes a cumulative log-likelihood and com-
pares it to a threshold which determines the probability of false
alarm. This likelihood ratio test is the most powerful test with
probability of false alarm less than or equal to a determined
value. The sequential probability ratio test (SPRT) updates
the cumulative log-likelihood ratio with each new observation
and compares it to a lower and upper thresholds which
guarantee the probability of false alarm and the probability
of miss [11]. For binary hypothesis testing, if the cumulative
log-likelihood ratio exceeds the lower or upper threshold, then
hypothesis 0 or hypothesis 1 is chosen respectively and the test
terminates. Otherwise, if it is between the two thresholds, the
test continues and another observation is taken. This test is
the optimal test for i.i.d. observations in terms of the expected
number of observations needed to make a decision within the
required probabilities of miss and of false alarm [11]. The
optimality of the SPRT is extended to non-i.i.d. observations.
For non i.i.d. observations, it is shown in [10] that time-
varying thresholds are optimal over fixed-thresholds. In [8],
the thresholds are constructed so that the probabilities of miss
and false alarm are upper bounded at each iteration. It is also
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shown that ordering the observations in the non-decreasing
order of the Kullback Leibler (KL) divergence minimizes the
average sample number.

However, for these Bayesian inference models to represent
how humans integrate information, cognitive biases should
be incorporated. Extensive research on human beings and
cognitive biases led to the conclusion that human inference
is best described in terms of a list of biases and heuristics,
regarded as illusions or discrepancies between what people
should do and what they actually do [3]. As an example of
cognitive biases, we cite the anchoring bias where humans are
influenced by starting points or initial beliefs. In [4] and [6] the
starting point bias is modeled by the impact of the initial bid
value on the willingness to pay. The interviewer introduces
successive bid values to a subject, and the initial bid value
influences the posterior willingness to pay of the subject. Other
biases are the heuristics that humans use in order to optimize
the time required for a mental task. In [9], this is modeled
by defining a cost function for the estimation error and the
number of observations needed to estimate a quantity. The
bias is incurred from optimizing the time-accuracy trade-off,
and it is thus defined by the time cost and the error cost at the
stage of estimating the value. In [5], the bias of overconfidence
or underconfidence in current earning forecasts is modeled by
introducing a multiplicative constant to the weight of the new
observation during the Bayesian updating procedure. In [2], the
belief update model is modified to account for the confirmation
bias in the context of auditing: the sensitivity of the auditor
to confirming and disconfirming information is represented by
adequate multiplicative constant for the new observation in the
anchoring and adjustment model used. Also in [1], the bias is
modeled by modifying the values of the thresholds used in the
sequential probability ratio test.

In this paper, we treat the problem of accounting for biases in
Bayesian updating and finding out the optimal sequencing of
i.i.d. information in the context of cognitive biases and without
cognitive biases. In Section II, we review existing models of
belief update in the literature with and without biases, and
we propose our model: a modified version of the Bayesian
updating to account for biases. In Section III, we propose
an optimal sequencing of i.i.d. Gaussian observations without
biases. We note that this is the first time that the order of
i.i.d. observations is shown to have an effect on decreasing
the probability of error. In Section IV, we propose an optimal
sequencing of i.i.d. Gaussian observations in the context of
cognitive biases. Section V concludes the paper.

II. MODELING COGNITIVE BIASES IN DECISION
MAKING

In this Section, we will propose a modification of the
Bayesian updating that can model decision making in the
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presence of biases. We will base our model on other models
in the literature that incorporate biases.

Let’s first introduce the belief-adjustment model proposed
by Hogarth and Einhorn in [7] to represent belief revision in
response to new evidence:

Sk = Sk—1 + wis(xy) (D

where :

Sk is the degree of belief in some hypothesis given k
pieces of evidence,0 < Sj <1,
s(zk) is the subjective evaluation of the kth piece of
evidence, —1 < s(zy) <1,
wy, is the adjustment weight of the kth piece of evidence,
x, is the kth piece of evidence.
The adjustment weight wy, for the kth piece of evidence is
defined as:

aSi—1 for negative evidence (evidence supporting hy-
pothesis H0), and
B(1 — Sk_1) for positive evidence (evidence supporting
hypothesis H1)
where « is the sensitivity towards negative evidence(0 < a <
1),and g is the sensitivity towards positive evidence(0 < 8 <
1).
The adjustment weight wy, is a function of the prior belief
to account for the contrast effect: The higher the anchor,
the bigger the adjustment. The importance of this model is
that it specifically distinguishes the sensitivity to confirming
evidence () from the sensitivity to disconfirming evidence
(a)). Bamber, Ramsay and Tubbs use this model to examine
auditors’ attitudes to evidence in [2].
The model we propose applies the framework of the belief-
adjustment model of Hogarth and Einhorn to the Bayesian
updating. Before proposing the model, we first consider a
basic problem of testing two hypothesis H0 and H1, and we
consider n observations Y;,¢ going from 1 to n, such that:

Hy: Y, = Wy, ¥n > 1 ”
Hy Y, =m+W, Vn>1 (

where W,, N(0,02) are i.i.d. and m is the difference in the
means under the two hypothesis.
The classical Bayesian updating model between the two hy-
pothesis H0 and H1 computes the cumulative log-likelihood
ratio as follows:

Ly =Li_ 1+ 3)

where [;, denotes the log-likelihood ratio for observation Y,
and L; denotes the cumulative log-likelihood ratio up to
observation Y},. Also,

o f(Yk|H1) o QmYk — m2
=) T a0 @
and
(Y| H k (Y;|H:)
b= los H Ty~ L) -3

i=1 i=1

4)
We propose a model that applies the framework of the belief-
adjustment model of Hogarth and Einhorn to the classical
Bayesian update model. In other words, we incorporate the

anchoring-and-adjustment process to the Bayesian update in
order to model the biases. These biases are quantified by the
adjustment weight for the new observation. The anchoring
bias and the confirmation bias lead the person to treat the
new information subjectively, depending on whether it is in
accordance to their belief or not. In our new proposed model,
the Bayesian update model becomes:

Ly = L1+ pily (6)

where p; is the adjustment weight that the subject gives
to the new observation due to biases. The coefficient py is
not restricted to a constant, and can be a function of past
observations.

In the context of the confirmation bias, the person is sensitive
to information that confirm their belief, and tend to neglect
disconfirmatory information. So consider the case when the
person is biased towards hypothesis H1. This can be mod-
eled by making pj less than one whenever [, is negative
(attenuation of evidence supporting hypothesis H0), and by
making pj, larger than one whenever [, is positive (emphasis
of evidence supporting hypothesis H1). Also, the larger the
current cumulative log-likelihood ratio, the more the person is
biased towards hypothesis H 1 and the more py, is close to zero
for negative [;. So py is proportional to Lj_;. The Neyman-
Pearson test and the SPRT can be applied in the same manner
as without biases. However, with the presence of bias, the
cumulative log-likelihood ratio is updated while taking into
account the effect of biases.

ITII. ORDERING INFORMATION WITHOUT
COGNITIVE BIASES

The main goal of this paper is to study the problem of
ordering in real time observations presented to a human subject
to optimize the human decision-making. Before solving this
problem, we consider the problem of optimally ordering in
real time observations in the absence of cognitive biases
to maximize performance when a hypothesis test terminates
early. Specifically, we reconsider the detection problem men-
tioned in the previous section. The number of i.i.d. Gaussian
observations is IV, and we are interested in the problem of
finding out which N’ observations to show to the subject
in order to minimize the probability of error due to the
loss of N — N’ observations. The solution we propose is to
order the log-likelihood ratios of the /N observations from the
highest absolute value to the smallest, and then pick the N’
observations corresponding to the highest N’ values of the
ordered log-likelihood ratios.

The intuition is that, even though the observations are i.i.d.,
large absolute value of the log-likelihood ratio has high quality
of information.

Moreover, another intuition is the following: the cumulative

log-likelihood ratio is Ly = va 1 (L) We need to keep the

most relevant N’ observations with L= Zk 1( ne )» Where

k goes from 1 to N’ and ny takes different values from 1

to N. In other words, we denote the error by |Ly — Ly|
N’ N

‘Zz 1) =D ny)| = ‘Zk N'+1(lm)" we need the

error to be as small as possible. The problem of minimiz-

ing ’Zk:N, 4+1(ln, )| over all possible combinations of N’
out of the IV observations has a polynomial time solution
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Fig. 1: ROC curves under different orderings of Gaussian i.i.d. observations

O(NN") if we consider N’ a constant, and a solution with
exponential complexity if we let N’ scale with N. Now since

ZQ:N,H(lnk) < Zg:N/H(UmD’ then minimizing the
HS would guarantee an “okay” solution, meaning it would
guarantee a small error, but not the smallest. Also, since the
infimum of the error is zero, a good approach to minimize the
error would be to first pick the log-likelihood ratios between
N’+1 and N as opposite numbers that sum to zero, and when
nearly all the log-likelihood ratios left have the same sign, pick
the smallest absolute values of the log-likelihood ratios.
In our case, we first note that [, = 2’”}2/;7;7”2 so [ fol-
lows a Gaussian distribution with variance Var[l|Ho|] =
Var[ly|Hi] = m?/(c?) and mean E[lx|Ho] = —m?/(202)
and E[lx|H;] = m?/(20%) . The distribution of I, is either
a Gaussian shifted towards the left of the y-axis or towards
the right. Therefore, the opposite values with the highest
probability of occurrence lie close to zero, and thus picking the
log-likelihoods with smallest absolute values highly guarantees
opposite values than sum to zero, and the values left would
have a small absolute value as well.
We note that even though this approach is not guaranteed to
necessarily give the ordering with the smallest feasible error,
its simplicity and good performance make it a good solution.
To verify our claim on the proposed ordering of the ob-
servations, we consider the total number of i.i.d. Gaussian
observations N to be 10, and the number of observations to
keep N’ = 4. We simulate the corresponding ROC curves
under 4 cases: the original case where the 10 observations are
considered, the second case where we order the observations
from their highest absolute value of the log-likelihood ratio to
the smallest value and pick the observations corresponding to
the largest N’ = 4 values, the third case corresponding to the
exponential time solution, and two other cases corresponding
to random orderings of 4 observations from the 10 observa-
tions.
The ROC curve of a test plots the probability of detection
(Pd) versus the probability of false alarm (Pf) of a test. Only
the pairs (Pd,Pf) below the curve are achievable. A test is

without bias

therefore considered better than another if its ROC curve is
higher, meaning the area under its ROC curve is larger.

In Figure 1, the highest ROC curve corresponds to the original
case where all observations are considered. As expected, the
ROC curve obtained using the exponential time solution is
nearly overlapping with the original ROC curve. Also as
expected, the next best ROC curve is for the case when we
order the observations from the highest absolute value of the
log-likelihood ratio to the smallest. It is clear that the ROC
curves for random case are lower than the ROC curve with
our proposed ordering. Thus, the proposed ordering is a simple
linear solution which guarantees low probability of error.

IV. ORDERING INFORMATION WITH COGNITIVE
BIASES

In the context of cognitive biases, the Bayesian up-
date is no more the classical one, as shown in II. The
cumulative log-likelihood ratio up to the N’th observa-

tion L%, becomes: L%,:Zivzll(pnklnk). The error becomes:
N N’ .
> ke (Ini) + 25— (Iny, (1 = Py )| We note that mini-

mizing this error has a polynomial time solution O(NY /) if
we consider N/ a constant, and a solution with exponential
complexity if we let N’ scale with N. It is a harder problem
with the bias model than without considering the bias since in
the bias model, different orderings of a specific combination
of N’ observations lead to different cumulative log-likelihood
ratios given the N’ observations. This is because for each new
observation, the adjustment weight depends on the cumulative
log-likelihood ratio at the time of the acquisition of the new
information as shown in Section II. Consider the setting where
the information is attenuated if it is not supporting the current
belief of the subject, i.e. the current cumulative log-likelihood
ratio L1, and emphasized when it is supporting the current
belief. Also, as pointed out in Section II, the adjustment weight
Pk is a function of Lj;_;. We consider an adjustment weight
p less than 1 as attenuating an observation, and an adjustment
weight p larger than 1 as emphasizing an observation. The
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Fig. 2: ROC curves under different orderings of Gaussian i.i.d. observations with bias

solution we propose is to keep observations with the high-
est absolute values of the log-likelihood ratio as shown in
Section III, and we show that this method guarantees low
probability of error while reducing the §xponential complexity
of minimizing ‘Z]kv:]v,ﬂ(lnk) + ij:l(lnk(l — pnk))‘ over
all the possible permutations of N’ out of N observations.
Another advantage for the method proposed is that it doesn’t
require knowing the adjustment weight neither the initial log-
likelihood ratio that a human has before any observation. We
simulated the ROC for the same problem as above (with
N’ = 4, N = 10). An adjustment weight pj less than one
discriminates disconfirming observations and an adjustment
weight p,,, higher than one keeps the confirming observations.
We note that p,, is proportional to the value of the prior
cumulative log-likelihood ratio L;_; before the acquisition of
the new observation as suggested in section II.

In Figure 2, the highest ROC curve corresponds also
to the original case without bias where all the N ob-
servations are considered. The ROC curve of the expo-
nential time solution for the problem of minimizing the

error: Zg:N,H(lnk) + Zlivzll(lnk(l - pnk))‘ is very close to
the original ROC curve. As expected, the next lower ROC
curve (in red) corresponds to the case where ordering of the
observations is done from the highest absolute value of the log-
likelihood ratio to the smallest (as in section III). The lowest
ROC curves are for random orderings. The bias introduces
additional errors due to over or under estimating the log-
likelihood ratio of the observations. Ordering observations
from highest to lowest absolute value of log-likelihood ratio
gives good results and low probability of errors since it keeps
the most relevant observations with the highest absolute value
of log-likelihood ratio. It has linear complexity, and doesn’t
require knowing neither the initial log-likelihood ratio nor the
parameters of the bias.

V. CONCLUSION

In this paper, we modified the Bayesian updating model
to account for cognitive biases. We then proposed ordering

i.i.d. Gaussian observations from highest to lowest absolute
value of log-likelihood ratio to guarantee low probability
of error. In the context of cognitive biases, we proposed
ordering observations while also keeping observations with the
highest absolute value of the log-likelihood ratio. This method
has low complexity, and doesn’t require knowing neither the
parameters of the bias nor the initial log-likelihood ratio when
accounting for the biases. We showed with simulations that
both orderings actually guarantee lower probability of errors
and larger area under the ROC curves than random orderings.
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