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ABSTRACT

We consider the problem of estimating the path taken by an object
in a road network from sparse, noisy position measurements. Path
estimation is posed in a Bayesian framework which allows the incor-
poration of prior information about vehicle movements. A carefully
designed importance sampler is used to approximate the posterior
path probabilities. The algorithm is demonstrated on simulated data.

Index Terms— path estimation, Bayesian estimation, Monte
Carlo approximation

1. INTRODUCTION

Map-aided positioning has many applications in transportation and
navigation and has therefore been the subject of extensive research
interest. The particular problem considered here is that of deter-
mining the path taken by an object using a sequence of, usually
sparse, position measurements. In this context, sparse means that
position measurements are not available along all edges of the road
network. A comprehensive account of the methods proposed for
path estimation, also called map matching, can be found in [1, 2].
In [1] path estimation algorithms are categorised into four groups:
geometric [3], topological [4], probabilistic and advanced. Here we
pose path estimation in an estimation theoretic framework, specifi-
cally that of Bayesian estimation. As such, our approach belongs in
the class of probabilistic methods. The Bayesian approach provides
a principled way of incorporating prior information and uncertainty
about the measurements. The result is a posterior distribution over
the paths which is useful not only for path estimation but also for
quantifying how well the path can be estimated.

A disadvantage of the Bayesian approach is that it is not practical
to compute the posterior path probabilities exactly and developing a
computationally efficient approximation is challenging. Several ap-
proaches have been developed to address this problem. The multi-
ple hypothesis tracker (MHT) [5] has been adapted for path estima-
tion in several papers [6–9]. The MHT involves enumerating and
evaluating hypotheses regarding the edges occupied by an object at
measurement sampling times [7, 8] or the path taken between mea-
surements [6]. Only [6] considers sparse data but does not develop a
rigorous Bayesian model comprising a prior for the unknown param-
eters and a likelihood. Markov chain Monte Carlo (MCMC) meth-
ods for path estimation have been proposed in [10–12]. The partic-
ular MCMC approach used in these papers is Metropolis-Hastings
sampling, a broad class of techniques in which the basic idea is to
propose a sample which is then accepted probabilistically.

This work was supported by DSTO.

We develop a full Bayesian model in which a prior distribution
is used to incorporate information about vehicle movement. A mea-
surement model captures the uncertainty in the position measure-
ments and their attribution to particular objects. A sequential impor-
tance sampling procedure is used to approximate the posterior path
probabilities. Importance sampling involves drawing samples from
an importance density and then weighting them appropriately. The
key to efficient importance sampling, in the sense of providing accu-
rate approximation with a moderate sample size, lies in the construc-
tion of the importance density. A vital property is that samples be
drawn conditional on the measurements [13]. We develop a sequen-
tial sampling procedure for the object path and the object locations
at each measurement sampling instant. We show that, under the as-
sumption that the road network is composed of straight lines, we can
design a measurement-directed importance density from which it is
easy to sample. As a result, almost optimal Bayesian path estimation
can be achieved with moderate sample sizes.

The approach to path estimation proposed here is most closely
related to the MCMC methods developed in [10–12]. Our contribu-
tions relative to this existing work are as follows. First, instead of
using MCMC sampling, which produces dependent samples and re-
quires convergence diagnostics [14], we use an importance sampler.
Importance sampling produces independent samples and does not re-
quire a burn-in period before convergence is achieved. Second, care
has been taken to ensure that samples are drawn in the important
part of the parameter space and computationally costly numerical
approximations are avoided. The result of these two contributions is
that accurate approximation is obtained with small sample sizes.

The paper is organised as follows. In Section 2 the path estima-
tion problem is formulated in the Bayesian framework. An impor-
tance sampling algorithm for approximating the posterior path prob-
abilities is described in Section 3. The performance of this algorithm
is evaluated in a simulation scenario in Section 4.

2. THE PATH ESTIMATION PROBLEM

A transportation network is structured as a directed, weighted graph
G = (V, E), with vertices V connected by edges E ⊆ V × V and
edge weights ` : E → R+ representing distance along edges. A
graph embedding maps the vertices in the graph to point locations
in the plane and the edges in the graph to polyline geometries in
the plane. A path ρ is a sequence of vertices v1, . . . , vq such that
(vi, vi+1) ∈ E for i = 1, . . . , q − 1.

It is desired to estimate the path taken by an object using m
imprecise position measurements y1, . . . ,ym, yj ∈ R2, obtained
at times t1, . . . , tm. We pose the problem in the Bayesian frame-
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work. In particular, the problem is formulated in a sequential fash-
ion in which we recursively estimate the path taken up to time tj for
j = 1, . . . ,m. A sequential approach is favoured because it allows
Bayesian inference to be performed in a computationally efficient
manner. This is explained in more detail in Section 3.

Let ρj denote the path taken up to time tj . The notation ρa:b
is used to denote the sequence ρa, . . . , ρb. Our approach to path
estimation involves computation of the joint posterior density:

πm(ρ1:m) ∝ g(y1:m|ρ1:m)π0(ρ1:m), (1)

where πm(·) denotes the path distribution conditional on the mea-
surements y1:m, g(·|ρ1:m) is the density of the measurements taken
at times t1:m conditional on the paths ρ1:m and π0(·) is the path
prior density. The latter two densities are developed below.

2.1. Measurement model

Let `(e) denote the length of the edge e ∈ E. The position of
an object on the road network is represented by s = (r, e) ∈
∪d∈E [0, `(d)] × {d} = S where e is the edge occupied by the ob-
ject and r is the distance along the edge. Points on the road network
are mapped to positions in the observation space via the function
x : S → R2. It is assumed that the position measurements y1:m

are independent and identically distributed random variables. Each
variable yj follows a two-dimensional joint Gaussian distribution
with mean x(sj) and covariance R. The position measurements
then satisfy

g(y1:m|ρ1:m) =

∫ m∏
j=1

N(yj ; x(sj), R)π0(s1:m|ρ1:m) ds1:m,

(2)

where N(·; µ, Σ) denotes the normal density with mean µ and co-
variance Σ and π0(s1:m|ρ1:m) is the prior density of the object loca-
tion given the path. Note that the integration in (2) is over the space
Sm and therefore involves summation over the edges and integration
over the length of each edge. It remains to specify the prior density
π0(s1:m|ρ1:m). This is addressed in the next subsection.

2.2. Prior density

Computing the posterior density (1) requires the path prior and the
prior for the object location conditional on the path. The notation
π0(·) is used for all priors. The particular prior being referred to is
determined by the arguments. The path prior factorises as

π0(ρ1:m) = π0(ρ1)

m∏
j=2

π0(ρj |ρ1:j−1). (3)

At time t1 only a single measurement is available so the path ρ1 is
composed of a single edge. Any distribution over the edge space E
could be selected. The prior for the path ρj at time tj , j ≥ 2 must
begin with the same edges as the path ρj−1. It seems reasonable to
choose the prior probabilities of the paths satisfying this basic re-
quirement on the assumption that vehicles will take the shortest and
most direct route to their destination. Let L(ρ1, ρ2) be the length
of the extension between ρ1 and ρ2 and T (ρ1, ρ2) denote the turn
penalties imposed in the extension of ρ1 to ρ2. Roughly speaking,
the turn penalty should increase as the number of turns and their
severity increases. The prior for the path extensions is then

π0(ρj |ρ1:j−1) ∝ 1/[L(ρj−1, ρj) + T (ρj−1, ρj)]. (4)

The location prior factorises as

π0(s1:m|ρ1:m) = π0(s1|ρ1)

m∏
j=2

π0(sj |sj−1, ρj). (5)

Recall that ρ1 is simply an edge. We choose the location prior at time
t1 to be a uniform distribution over this edge. The recursion of the
location from time tj−1 to time tj should take into account the as-
sumed characteristics of vehicles moving through the road network.
For instance, if the object is moving in a busy city it is unlikely to be
moving quickly. We consider a starting location s1 = (r1, e1), path
ρ and finishing location s2 = (r2, e2). The path ρ must be such that
it includes the edge e1. If the edge e2 is not the same as the ending
edge of ρ then the location s2 has zero probability. Assuming that
e2 is the ending edge of ρ, let k denote the number of edges in ρ
between e1 and the ending edge. The ith such edge is denoted as
εi and has length `i = `(εi). The time taken to travel along the ith
edge of ρ is assumed to be drawn from the density N(·;T i, κi). The
dependence of these quantities on ρ is not reflected in the notation
for the sake of brevity. Then, for e2 = εk, the location prior can be
found as

π0(s2|ρ, s1) =

N

(
tj − tj−1; T̃ +

r2Tk
`k

, κ̃+
r22κk
`2k

)
χ[0,`k](r2)

C
,

(6)
where χA(·) is the indicator function on the set A and

T̃ = (`1 − r1)T1/`1 +

k−1∑
i=2

T i (7)

κ̃ = (`1 − r1)2κ1/`
2
1 +

k−1∑
i=2

κi (8)

C =

∫ `k

0

N
(
tj − tj−1; T̃ + rTk/`k, κ̃+ r2κk/`

2
k

)
dr. (9)

3. BAYESIAN PATH ESTIMATION ALGORITHM

Given the prior densities and measurement model described above
inference over the paths can, in principle, be performed by comput-
ing (1). In practice, this cannot be done exactly and approximations
are sought. An efficient importance sampling approach is proposed
in which the posterior density is approximated by drawing samples
from an importance density and assigning appropriate weights. The
importance sampling approximation is developed under the follow-
ing assumptions:

A1 The road network is composed of straight line segments.
A2 The measurement noise covariance matrix is diagonal.

Assumption A1 can be satisfied with arbitrary accuracy by suitably
selecting the vertices of the network. For instance, on curved seg-
ments the vertices should be close to each other. Assumption A2 is
made to simplify the derivations and can be relaxed.

3.1. Importance sampling

It is convenient to re-formulate the problem as one of having to es-
timate both the paths ρ1:m and the object locations s1:m. The joint
posterior of the paths and locations is

πm(ρ1:m, s1:m) ∝
m∏
j=1

N(yj ; x(sj), R)π0(ρ1:m, s1:m). (10)
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The object locations s1:m may be viewed as auxiliary variables, the
sampling of which simplifies the sampling of the paths. The impor-
tance sampling approximation to the posterior is obtained by draw-
ing (ρi1:m, s

i
1:m) ∼ q(·) for i = 1, . . . , n, where n is the sample

size, and computing weights

wi ∝

m∏
j=1

N(yj ; x(sij), R)π0(ρi1:m, s
i
1:m)

q(ρi1:m, s
i
1:m)

. (11)

Quantities of interest related to the paths can be computed from the
samples and associated weights. For instance, the posterior proba-
bility of a path ρ can be approximated as

π̂m(ρ) =
∑

{i:ρim=ρ}

wi. (12)

The most probable path can be used as an estimate of the path taken
by the object, i.e., ρ̂ = arg maxρ π̂m(ρ).

Selecting a suitable importance density is the key to obtaining
an accurate Monte Carlo approximation with a reasonable sample
size. In the following sections we construct an importance density
by considering the measurements sequentially. The structure of the
problem is exploited to obtain an importance density which makes
effective use of the measurements and remains easy to draw samples
from.

3.2. The optimal sequential sampling density

Sequential sampling of the paths and locations is achieved by select-
ing the importance density to factorise as

q(ρ1:m, s1:m) = q(ρ1, s1)

m∏
j=2

q(ρj , sj |ρ1:j−1, s1:j−1). (13)

Following [13], the importance density in which each factor of (13)
is proportional to the corresponding factor in the posterior (1) is re-
ferred to as the optimal importance density. At time t1, sample paths
are drawn from

q(ρ1) ∝ π0(ρ1)

∫
N(y1; x(s1), R)π0(s1|ρ1) ds1 (14)

q(s1|y1) ∝ N(y1; x(s1), R)π0(s1|ρ1). (15)

The importance density at time tj , j ≥ 2 is defined by the two
conditional densities:

q(ρj |ρ1:j−1, s1:j−1,y1:j) ∝ π0(ρj |ρj−1)γj(ρj) (16)
q(sj |ρ1:j , s1:j−1, y1:j) ∝ N(yj ; x(sj), R)π0(sj |sj−1, ρj),

(17)

where

γj(ρ) =

∫
N(yj ; x(sj), R)π0(sj |sj−1, ρ) dsj . (18)

The importance weight for the ith sample can be found from (11)
and (14)-(17) as

wi ∝
m∏
j=2

∑
ρj

π0(ρj |ρij−1)γj(ρj). (19)

The optimal sampling density described here cannot be used in gen-
eral because the integral (18) and the density (17) are not necessarily
tractable. In the following subsection a computationally efficient but
accurate approximation is developed.

3.3. An approximation to the optimal sequential sampling den-
sity

We develop an approximation to the optimal sequential importance
density under assumptions A1 and A2. Since each edge e is a
straight line segment it can be characterised by a starting point
ξe = [xe, ye]

′, orientation θe and length `(e). The following two
results are used.

Proposition 1. For y = [x, y]′ and s = (r, e), the likelihood can
be written as

N(y; x(s), R) = ueTN(r; µe, v, [0, `(e)]), (20)

where TN(·; µ, σ2, A) is the density of a normal random variable
with mean µ and variance σ2 truncated over the set A, and

ue = Ke ×


sec θeN(y − ye; (x− xe) tan θe, υ sec2 θe),

cos θe 6= 0,
cosec θeN(x− xe; (y − ye) cot θe, v cosec2 θe),

cos θe = 0.

(21)

with

Ke =

∫ `(e)

0

N(r;µe, v) dr (22)

Proof. See [15].

The location prior given in (6) cannot be combined with the like-
lihood to give a closed-form sampling density because the variance
depends on the location r2. To construct the importance density we
use the following approximation to the location prior density, for
s2 = (r2, e2), e2 = εk,

π̂0(s2|ρ, s1) =
N(tj − tj−1; r2T̄k/`k + T̃ , κ̃+ κk)χ[0, `k](r2)

C1

= TN(r2; αk, λk, [0, `k]), (23)

where

C1 =

∫ `(εk)

0

N(r; αk, λk) dr (24)

αk = `k(tj − tj−1 − T̃ )/T̄k (25)

λk = `2k(κ̃+ κk)/T̄ 2
k . (26)

Recall that `k is the length of the final edge in the path ρ. The ap-
proximation (23) removes the dependence of the variance on the lo-
cation. This doesn’t prevent asymptotic convergence as n → ∞
provided samples are weighted according to (11).

Using the Gaussian product lemma [16] and Proposition 1, an
approximation to the optimal sampling density which makes use of
(23) can be found as, for s2 = (r2, e2), e2 = εk,

q(s2|ρ, s1,y) ∝ N(y; x(s2), R)π̂0(s2|ρ, s1)

∝ TN(r2; νe2 , ζk, [0, `k]), (27)

where

νe = (vαk + λkµe)/(v + λk) (28)
ζk = λkv/(v + λk). (29)
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The path is chosen by sampling from

q(ρ|%, y) ∝ π0(ρ|%)γ̂(ρ), (30)

where γ̂(ρ) is an approximation of (18),

γ̂(ρ) = uεkN(µεk ; αk, v + λk)C2/C1, (31)

with

C2 =

∫ `(εk)

0

N(r; νk, ζ) dr. (32)

For the first measurement, recall that ρ1 is composed of only a
single edge so that the location prior is, for s1 = (r1, e1), e1 = ρ1,

π0(s1|ρ1) ∝ χ[0, `(ρ1)](r1). (33)

Then, under the assumption that the road network is made of straight
line segments, the location sampling density is, for s1 = (r1, e1),
e1 = ρ1,

q(s1|ρ1, y1) ∝ N(y1; x(s1), R)χ[0, `ρ1 ](r1)

∝ TN(r1; µρ1 , v, [0, `ρ1 ]). (34)

where we have used Proposition 1. The path sampling probabilities
are

q(ρ1) ∝
∫

N(y1; x(s1), R)π0(s1|ρ1) ds1 π0(ρ1)

= Kρ1uρ1π0(ρ1)/`(ρ1), (35)

Finally, the sample weights are

wi ∝
m∏
j=2

π0(sij |ρij , sij−1)

π̂0(sij |ρij , sij−1)

∑
ρj

π0(ρj |ρij−1)γ̂j(ρj). (36)

Note that the approximations used for the location priors at times
t2, . . . , tm are accounted for in the weight update. These approxima-
tions over-estimate the uncertainty in the location prior to a degree
which decreases as the length of the path increases. The k-shortest
paths algorithm [17] is used to construct a set of candidate paths be-
tween each pair of measurements. Sampling is performed only over
these paths rather than the whole set of paths.

4. PERFORMANCE ANALYSIS

The road network used to test the performance of the path estimation
algorithm is a regular grid consisting of 8× 8 nodes with a uniform
edge length of 100 m. In the prior, the duration along each edge is
Gaussian distributed with mean T i = 10 s and κi = 4. Measure-
ments of the object positions are Gaussian distributed with zero bias
and standard deviation 5 m.

We consider the effect of path length and measurement sampling
rate on algorithm performance, as measured by the number of times
the correct path is estimated over 100 realisations. Paths and posi-
tion measurements are randomly generated for each realisation. The
correct path percentage is plotted against sample size in Fig. 1 for
m = 3, 4, 5 and 6 measurements with measurement sampling rates
of 10, 15 and 20 s. The following points are of interest:
• Since the mean travel duration for an edge is 9 s, a sampling

rate of 10 s should result in a measurement being obtained
along most edges traversed by the object. Not surprisingly,
the correct path is then estimated with high probability, at
least for sample sizes greater than 10. For the larger sampling
period, where position measurements are not available along
all edges, performance is significantly worse.

• It may be expected that the ability to correctly estimate the
path would depend primarily on the sparsity of the measure-
ments. While this may be true of the achievable performance,
algorithm performance is significantly affected by the length
of the path. This can be seen by comparing the results ob-
tained for m = 3, 4, 5 and 6. Performance clearly deterio-
rates as the number of measurements, and therefore the length
of the path, increases. This can be attributed to an increase in
the dimension over which paths, and positions, are sampled.

• The deterioration in performance as m increases becomes
less marked as the sample size increases. This can be seen, for
instance, by comparing the results obtained for samples sizes
of 10 and 100 with a measurement sampling period of 15 s.
For n = 10, the correct path probability achieved for m = 6
is 66.7% of that achieved for m = 3 while for n = 100 the
corresponding percentage is 87.4%. This suggests that the
performance of the optimal Bayes’ estimator, obtained as the
sample size n→∞, may not be affected by path length.
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(a) m = 3
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(c) m = 5
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(b) m = 4
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(d) m = 6

Fig. 1: Probability of correct path estimation plotted against sample
size for (a) m = 3, (b) m = 4, (c) m = 5 and (d) m = 6 with
sampling periods of 10 s (dotted), 15 s (dashed) and 20 s (solid).

5. CONCLUSION

Path estimation of an object moving in a road network has been for-
mulated in the Bayesian framework. An efficient importance sam-
pler, which exploits the structure in the prior density and likelihood,
has been proposed to approximate the posterior path probabilities.
The algorithm has been shown to perform well in simulation scenar-
ios. Future work will involve testing with real data.
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