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ABSTRACT

The paper presents a method for estimating the parameter of
a Potts model jointly with the unknowns of an image segmen-
tation problem. The method addresses piecewise constant im-
ages degraded by additive noise. The proposed solution fol-
lows a Bayesian approach, that yields the posterior law for all
the unknowns (labels, gray levels, noise level and Potts pa-
rameter). It is explored by means of MCMC stochastic sam-
pling, more precisely, by Gibbs algorithm. The estimates are
then computed from these samples. The estimation of the
Potts parameter is challenging due to the intractable normal-
izing constant of the model. The proposed solution is based
on pre-computing the value of this normalizing constant for
different image dimensions and number of classes, this being
the novelty of this paper. The segmentation results are as sat-
isfying as those obtained when tuning the parameter by hand.

Index Terms — Bayes, Potts model, normalizing con-
stant, unsupervised segmentation, stochastic sampling.

1. INTRODUCTION

The paper addresses the problem of image segmentation
of piecewise constant images in a Bayesian framework. A
common approach relies on the Potts model that takes into
account the spatial correlation between neighbouring pix-
els. This model is driven by the β parameter, also called the
granularity coefficient. The value of this parameter dictates
the amount of spatial correlation introduced by the model.
More precisely, it affects the size and number of the regions
obtained as a result of image segmentation. A too small value
for this parameter leads to the formation of small regions
in the image. As a consequence, the image can be over-
segmented. On the other hand, a too large value of β might
lead to under-segmentation since the image is segmented in a
small number of large size regions.

Hand adjusting the parameter’s value might be a very
time-consuming task, especially in the case of big data sets.
For this reason, the estimation of the granularity coefficient is
of major interest. However, its estimation is challenging since
the likelihood requires the normalizing constant or partition
function of the Potts model. This term, defined in section 2,

is a sum over all possible label configurations in the image,
which makes its evaluation prohibitive [1]. As a result, in the
majority of existing methods, the value of β parameter is fixed
by hand. However, a few approaches estimate β jointly with
all the unknown quantities. This is achieved by sampling the
a posteriori conditional law for the parameter by using meth-
ods such as Likelihood free Metropolis Hastings [2], where
the exact computation of the normalizing constant is avoided
by means of approximation (see also [3]).

The novelty of the paper is in pre-computation of the par-
tition function for several image sizes and numbers of classes.
An additional advantage of the approach, compared to the ex-
isting ones, is a significant reduction of computational cost.

In order to compute the estimates, the posterior law for
all the quantities is calculated by the Bayes’ rule. How-
ever, given its complex expression and the intricate posterior
dependence between the unknowns, its handling cannot be di-
rectly achieved and MCMC stochastic sampling is employed,
more specifically a Gibbs loop. Thus, by making use of the
pre-computed values of the partition function, the conditional
posterior for β is sampled jointly with all the unknowns,
namely the labels, the gray levels of each class and the noise
precision. Finally, the estimates for the labels are computed
as marginal posterior maximizers and the other parameters as
posterior means based on the simulated samples.

2. HIERARCHICAL MODEL

The observed image y is modelled as the addition of a noisen
over the input image x. All the images are vectorised, of
size P . The observation model is then:

y = x+ n (1)

The segmentation’s goal is splitting the image in different
regions according to a homogeneity criterion. Here, the input
image is considered to be composed of K classes of constant
gray level, so that each class k is represented by a unique
value νk. The proposed segmentation approach is based on
a hidden label field, denoted by z so that each pixel zp, p =
1, . . . , P , receives a discrete label k ∈ {1, 2...K}. As a result,
the estimation of this label field gives the image segmentation.
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Fig. 1: Hierarchical model: the round nodes / the square ones
show the estimated / fixed quantities.

In a Bayesian framework, the information on the un-
knowns is modelled by means of a priori laws. The following
paragraphs present the chosen prior laws for each unknown.

2.1. Label field model

As mentioned before, a Potts field models the label z:

p(z|β) = C(β)−1 exp
{
β
∑
p∼a

δ(zp; za)
}

(2)

where ∼ stands for the neighbour relation between pixels in
a first order system and δ is the Kronecker function that is to
say δ(u; v) is 1 if u = v and 0 if not.

The model depends on β (called Potts parameter or gran-
ularity coefficient) tuning the spatial correlation. It includes a
normalizing coefficient also named the partition function:

C(β) =
∑

z∈{1,...K}P
exp

{
β
∑
p∼a

δ(zp; za)
}

(3)

Its knowledge is naturally crucial in order to estimate β, since
it is involved in the likelihood of β attached to a given config-
uration. Its analytical expression is unknown, except for the
Ising field1. Numerically, it is a colossal summation over the
KP possible configurations and the exhaustive exploration of
these configurations is impossible (except for minuscule im-
ages). However, based on stochastic simulation, we have pre-
computed the partition function for several image sizes and
numbers of classes, as explained in Appendix A. It remains
a huge task but it is attainable: it required several weeks of
intensive computation (on a standard PC), but it is done once
for all. This is the keystone for the estimation of β here.

2.2. Image and class levels model

Here, we formalize the rearrangement of the νk in a piecewise
constant image for a label configuration z.

1For the Ising field, i.e. K = 2, the partition has been explicitely known
for a long time [4] (but yet a certain part of the literature seems unaware). It
has been included in several papers [5, 6].

For each pixel p consider tk(zp) = δ(zp; k) that is to
say tk(zp) = 1 if the pixel p is in the class k and 0 other-
wise. Then collect the tk(zp) in K binary vectors with size
P : tk(z) = [tk(z1), . . . tk(zP )].

Starting from the vectors tk(z) and from the class levels
νk, the rearrangement as a piecewise constant image writes:

x =

K∑
k=1

νktk(z) (4)

When it comes to the a priori law definition, a Gaussian
distribution is considered for modelling the class levels. Start-
ing from the hypothesis that the levels are independent, and
considering that each one has the same parameters m0 et γ0,
the prior density for the K levels is written as:

p(ν) =

K∏
k=1

N (νk;m0, γ
−1
0 )

= (2π)−K/2γ
K/2
0 exp

{
− γ0

K∑
k=1

(νk −m0)2/2
} (5)

where ν = [ν1, . . . , νK ] denotes the vector containing the
gray levels for all the classes.

2.3. Noise model and likelihood

Regarding the noise, a Gaussian, white, homogenous and
zero-mean with precision γn model is considered:

p(n|γn) = N (n; 0, γ−1n I)

= (2π)−P/2γn
P/2 exp{−γn||n||2/2}

Starting from this model together with the observation
model (1) and the rearranging equation (4), the likelihood is:

p(y|ν, z, γn, β) = N (y;
∑
k

νktk(z); γ
−1
n I)

=(2π)−P/2γP/2n exp
{
− γn||y −

∑
k

νktk(z)||2/2
} (6)

It is the probability of the data given the unknowns.

2.4. Hyperparameters prior laws

The hyperparameters are the Potts parameter β and the noise
precision parameter γn. A classical choice is based on a con-
jugate prior, that will ease the further computations. With this
in mind, a Gamma prior density is defined for γn:

p(γn) = G(γn; a, b) = Γ (a)−1 ba γa−1n exp{−bγn} (7)

When it comes to β, a conjugate choice is not an obvious
one, given the expression of the Potts model. A uniform prior
on an interval [0, B] is considered as a reasonable choice:

p(β) = U[0,B](β) (8)

where B is defined as the maximum possible value of β.
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2.5. Posterior law

The posterior distribution is the law for all the unknowns
given the observation. It is first based on the prior distribution
for the unknown parameters (2), (5), (7) and (8). It is natu-
rally also based on the likelihood (6). Finally, its construction
relies on conditional independance properties encoded in the
hierarchical model given in Fig. 1.

p(ν, z,γn, β|y) ∝ γP/2+αb−1
n U[0,B](β)

× exp
{
− γn||y −

∑
k

νktk(z)||2/2
}

× exp
{
− γ0

∑
k

(νk −m0)2/2
}

× exp
{∑
p∼a

βδ(zp; za)
}

exp{−bγn}

(9)

The intricate expression of this law stems from the a posteri-
ori dependence between the problem’s unknowns, in spite of
their a priori independence. As a result, the estimations can-
not be inferred directly. To this purpose, MCMC stochastic
sampling is employed, as presented in the next section.

3. SAMPLING ALGORITHM

To explore the posterior, we resort to a Gibbs loop that splits
the global sampling problem in four easier sub-problems.
More precisely, the conditional posterior for each unknown is
successively sampled in an iterative way. The samples form a
Markov chain whose distribution converges to the posterior.
The pseudo-code is given in algorithm 1.

First of all, the posterior for each unknown conditionally
on the other unknowns must be obtained. Each one is ob-
tained by keeping from the expression of the posterior (9)
only the factors containing that parameter. It should be noted
that certain parameters will be simplified so that, eventually,
the conditional posterior for a given unknown will depend
only on some other unknowns, in accordance with the hier-
archical model given in Fig. 1. The conditional posterior laws
are given below.

Algorithm 1 Gibbs sampling algorithm

1: Initialize γ(0)n ,ν(0), z(0), β(0)

2: for q = 1, 2, ...Q do
3: sample γ(q)n under p(γn|ν(q−1), z(q−1), β(q−1),y)
4: for k = 1, 2, ...K do
5: sample ν(q)k under p(νk|γ(q)n , z(q−1), β(q−1),y)
6: end for
7: sample z(q) under p(z|ν(q), γ

(q)
n , β(q−1),y)

8: sample β(q) under p(β|ν(q), z(q), γ
(q)
n ,y)

9: end for

At this point, we can see the advantage of a conjugate
prior for γn and the νk: their posterior distributions remain
in the same family as the prior ones. Here, the conditional
posterior for γn is a Gamma law with parameters a′ and b′:{

ã = a+ P/2

b̃ = b+ 1/2||y −
∑
νktk(z)||2

Secondly, the conditional posterior for each gray level νk
is Gaussian with mean ν̃k and precision parameter γ̃k:{

γ̃k = γnNk + γ0
ν̃k = γ̃−1k (γntk(z)ty + γ0m0)

where Nk denotes the number of pixels having the label k.
Regarding the label set, its conditional posterior is a dis-

crete one. In order to sample it, the probabilities πpk for the
pixel p to be in the class k need to be computed. It is:

πpk = π̃pk

/∑
l

π̃pl

where π̃pk is a non-normalized probability deduced from (9):

π̃pk = exp{−γn(yp − νk)2/2} exp{βNp
k}

where yp denotes the p-th pixel in the observed image andNp
k

the number of neighbours of pixel p having the label k.
Finally, the conditional posterior for β is deduced:

p(β|z) ∝ C(β)−1 exp
{
β
∑
p∼a

δ(zp; za)
}
U[0,B](β)

By taking advantage of the fact that β is scalar with values in
the finite interval [0, B] and that the partition function C(β)
is pre-computed for a fine grid2 of [0, B], we can easily com-
pute the conditional cumulative density function (cdf) F (β)
by standard numerical integration techniques. The obtained
values are then interpolated to yield an approximation of the
cdf denoted F̃ (β). Then, at iteration q, it suffices to inverse
the cdf to generate the sample under p(β|z). More precisely,
the procedure is the following:

Sample u ∼ U[0,1](u) ; Compute β(q) = F̃−1(u).

4. RESULTS

The ground truth x? is a 256× 256 piecewise constant image
with K = 3 classes, shown in Fig. 2-a and the true labels z?

are shown in Fig. 2-b. The true gray levels are −50, 50 and
150 and the true precision is γ?n = 0.005 (see Tab. 1). The
observed noisy image y is given in Fig. 2-c.

In different cases, the Gibbs sampler has been run several
times from identical and different initializations, and it shows
stable qualitative and quantitative behaviours similar to those
in Fig. 3. In the present case, the algorithm has been iterated
500 times and it can be seen that the sample distributions are
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(a) True image x? (a) True label z? (b) Observation y (c) Denoised x̂ (d) Estimated label ẑ

Fig. 2: Input image re-patching and segmentation result
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Fig. 3: Simulated chains. Left: for the νk and right: for γn
(top) and β (bottom).

stable after about 50 iterations (burn-in period). These sam-
ples have been removed for computing the estimates.

Regarding the labels, the estimates are computed as the
empirical marginal posterior maximizers from the samples.
Besides, the estimates for the other parameters are given in
terms of the empirical posterior mean. As shown in Tab. 1: the
estimated values are very close to the true ones, the relative
error being less than 1%.

When it comes to β, a hand-tuned value in the range go-
ing from 0.7 to 1.5 leads to satisfying segmentations results,
the best ones being obtained for a value around 1. The esti-
mated value is slightly higher, but, it should be noted that the
corresponding segmentation results are perfect, meaning that
100% of the image’s pixels are correctly labelled. This aspect
is confirmed by the results displayed in Fig. 2.

Table 1: Parameters’ true vs. estimated values
parameter ν1 ν2 ν3 γn β
true values -50 50 150 0.005 −
estimates -49.88 49.86 150.03 0.00503 1.26

5. CONCLUSIONS

In Bayesian image segmentation based on Potts model, the
granularity parameter is critical since an inappropriate value
might lead to poor segmentation. Its automatic-tuning repre-
sents a major stake since for large data sets hand-made tuning
might be extremely time-consuming, even impossible. A new

2Practically B = 3 and the grid step is 0.01.

method is proposed for its estimation jointly with the other
unknowns (labels, gray levels, noise level). It is based on
pre-computing the partition function for different image sizes
and numbers of classes. An advantage of the approach com-
pared to other ones is that the estimation relies on a precise
computation of the likelihood based on the partition function.
Furthermore, the computational cost is significantly reduced.
The simulations showed promising results.

As a perspective, we plan to tackle deconvolution-seg-
mentation and other reconstruction-segmentation problems [7,
8], still including the Potts parameter estimation. We also
plan to pay specific attention to texture models [9, 10].

A. PARTITION AS AN EMPIRICAL MEAN

Here we describe the pre-computation of the partition func-
tion based on well-known relation [11, 12].

Let us note S(z) =
∑
p∼a δ(zp; za) the number of pair

of adjascent pixels with identical label and C̄(β) = logC(β)
the log-partition. Relation (3) rewrites:

C(β) =
∑

exp
{
βS(z)

}
where the summation runs over all the configuration of the
field z ∈ {1, ...K}P . By derivation, we clearly have:

C ′(β) =
∑

S(z) exp
{
βS(z)

}
then dividing by C(β) we have the log-partition derivative:

C̄ ′(β) =
∑

S(z) C(β)−1 exp
{
βS(z)

}
= E[S(Z) ]

and it writes as an expectation that can be approximated by
an empirical mean

C̄ ′(β) ' 1

N

∑
S(zn)

where the zn are realizations of the field (given β).
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