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ABSTRACT
Monte Carlo (MC) methods are widely used in signal pro-
cessing and machine learning. A well-known class of MC
methods is composed of importance sampling and its adap-
tive extensions (e.g., population Monte Carlo). In this paper,
we introduce an adaptive importance sampler using a popula-
tion of proposal densities. The novel algorithm dynamically
optimizes the cloud of proposals, adapting them using infor-
mation about the gradient and Hessian matrix of the target
distribution. Moreover, a new kind of interaction in the adap-
tation of the proposal densities is introduced, establishing a
trade-off between attaining a good performance in terms of
mean square error and robustness to initialization.

Index Terms— Monte Carlo methods, adaptive impor-
tance sampling, population Monte Carlo (PMC), Hamiltonian
Monte Carlo

1. INTRODUCTION

Monte Carlo methods are widely used in signal processing
and communications [1, 2, 3]. The importance sampling (IS)
technique [4, 5] is a well-known Monte Carlo (MC) method-
ology to efficiently compute integrals involving a complicated
multidimensional target probability density function (pdf),
π(x) with x ∈ X ⊆ Rn. The IS technique draws samples
from a simple proposal pdf, q(x), assigning weights to them
according to the ratio between the target and the proposal,
i.e., w(x) = π(x)

q(x) . However, although the validity of this ap-
proach is guaranteed under mild assumptions, the variance of
the estimator depends critically on the discrepancy between
the shape of the proposal and the target. In order to solve this
issue, several works are devoted to the design of adaptive IS
(AIS) schemes [5], where the proposal density is updated by
learning from all the previously generated samples [6, 7, 8].
In all of them, the adaptation is based on sampling and esti-
mation arguments, so they only require to be able to evaluate
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the target function. AIS schemes have been applied suc-
cessfully in different fields and problems [9, 10, 11, 12, 13].
However, several issues still remain: the robustness w.r.t.
the initial conditions, the stability, or the ability to capture
all the relevant features (e.g., the modes) for complicated
distributions. These three aspects are strictly connected and
the challenge grows with the dimension of the state space
Rn. Whenever information about the derivatives of the target
is available, it is possible to increase the robustness of AIS
schemes. This idea has been applied in the MCMC frame-
work, where several Hamiltonian MCMC approaches have
been proposed [14]. In all of these methods, the increased
computational cost of evaluating the derivatives is balanced
by a great enhancement in the performance. However, this
idea has not been exploited yet in the importance sampling
framework as far as we know.

In this work, we introduce the gradient adaptive popu-
lation importance sampling (GAPIS) algorithm. At each it-
eration, GAPIS uses the information of the derivatives of the
target to update the location (mean) and the scale (covariance)
parameters of each proposal pdf. The mean adaptation is per-
formed as a combination of two processes: an independent
gradient ascent of each proposal (trying to reach the modes
of the target), and a repulsion term that depends on all the
proposals. This repulsion increases the exploratory ability of
GAPIS w.r.t. other competing algorithms (like PMC [6, 15],
AMIS [7], or APIS [8]), as it allows one proposal to describe
a specific portion of the state space, while the remaining pro-
posal pdfs explore other regions. The covariance adaptation
is achieved by computing the Hessian of the logarithm of
the target in the way described in Appendix A of [16]. Fi-
nally, GAPIS builds a multiple importance sampling estima-
tor, weighting the samples according to the so-called deter-
ministic mixture approach [17, 18]. Numerical results show
that GAPIS exhibits an excellent performance, regardless of
the initial conditions and parameters.

The paper is structured as follows. Section 2 provides
the problem statement. Section 3 describes the GAPIS al-
gorithm, including remarks about its implementation. The
performance of GAPIS is then compared to other methods
(PMC, APIS and static IS) through numerical simulations in
Section 4. The paper ends with the conclusions in Section 5.
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2. PROBLEM STATEMENT

In many applications, the aim is inferring a variable of interest
given a set of observations. Let us consider the variable of
interest, x ∈ X ⊆ Rn, and let y ∈ Y ⊆ Rd be the observed
data. The posterior pdf is then

p(x|y) =
`(y|x)g(x)

Z(y)
∝ `(y|x)g(x), (1)

where `(y|x) is the likelihood function, g(x) is the prior pdf,
and Z(y) is the model evidence or partition function (useful
in model selection). In general, Z(y) is unknown, so we con-
sider the corresponding (generally unnormalized) target pdf,

π(x) = `(y|x)g(x). (2)

Our goal is computing efficiently some moment of x, i.e., an
integral measure w.r.t. the target pdf,

I =
1

Z

∫
X
f(x)π(x)dx, (3)

where f is typically assumed to be a smooth function of x and
Z =

∫
X π(x)dx.

3. THE GAPIS ALGORITHM

3.1. Algorithm description

The GAPIS technique allows the estimation of both integrals
I and Z by drawing samples from a population of adaptive
proposal pdfs. GAPIS iteratively refines the estimation, ad-
justing the location and scale parameters of the proposal pdfs
making use of the first and second order statistics of the tar-
get (i.e., the mean and covariance). The adaptation is per-
formed computing the gradient and the Hessian matrix of the
log-target at the current location parameter µi of the i-th pro-
posal. The steps of the algorithm are described below.

1. Initialization: Set t = 1, Î0 = 0 and L0 = 0. Choose
N normalized proposal pdfs,

q
(0)
i (x;µ

(0)
i ,C

(0)
i ), i = 1, . . . , N,

where µ
(0)
i is the mean vector, and C

(0)
i is the covari-

ance matrix. Let K be the number of samples drawn
from each proposal per iteration, and T the total num-
ber of iterations. Calculate the gradient of the log-target
distribution,∇ log π(x).

2. Mean adaptation:

(a) Update the repulsion termGt ≥ 0 using a suitable
deterministic rule Gt = h(t) (see Section 3.2 for
further details).

(b) The mean of the i-th proposal is adapted as

µ
(t)
i = µ

(t−1)
i +λ∇ log

(
π(µ

(t−1)
i )

)
+

N∑
j=1

r
(t−1)
i,j ,

(4)
where λ > 0 is a constant,

r
(t−1)
i,j = Gt

mimj

‖d(t−1)
i,j ‖3

d
(t−1)
i,j , (5)

where ‖·‖ denotes the Euclidean norm operator,
d
(t−1)
i,j = µ

(t−1)
i − µ

(t−1)
j , and mi,mj > 0 are

two positive terms that depend on the i-th and j-th
proposals respectively.1

3. Covariance adaptation: The covariance matrix of the
i-th proposal is adapted as

C
(t)
i =

(
H

µ
(t)
i

)−1
,

where H
µ

(t)
i

is the Hessian matrix of− log(π(x)) eval-

uated at µ(t)
i (the new positions returned by Step 2).

4. Sampling steps:

(a) Draw K independent samples from each pro-
posal, i.e., z

(t)
i,k ∼ q

(t)
i (x;µ

(t)
i ,C

(t)
i ) for k =

1 . . . ,K and i = 1, . . . , N .
(b) Compute the importance weights,

w
(t)
i,k =

π(z
(t)
i,k)

1
N

∑N
j=1 q

(t)
j (z

(t)
i,k;µ

(t)
i ,C

(t)
i )

, (6)

for i = 1, . . . , N , and k = 1, . . . ,K.
(c) Normalize the weights as

w̄
(t)
i,k =

w
(t)
i,k

St
, (7)

with St =
∑N
i=1

∑K
k=1 w

(t)
i,k.

5. Iterative IS estimation: Obtain the “current” estimate
of I as

Ĵt =

N∑
i=1

K∑
k=1

w̄
(t)
i,kf(z

(t)
i,k), (8)

and the global estimate, using the recursive formula

Ît =
1

Lt−1 + St

(
Lt−1Ît−1 + StĴt

)
, (9)

where Lt = Lt−1 + St. Note that the estimation of the
normalizing constant is Ẑt = 1

NKtLt.

1The repulsion term in (4) mimicks Coulomb’s law, with Gt playing the
role of Coulomb’s constant and the mi playing the role of the electrical
charges. Each proposal corresponds to an electron, and thus the repulsion
between two of them is inversely proportional to the squared distance be-
tween their corresponding locations.
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6. Stopping rule: If t < T , set t = t+ 1, and repeat from
Step 2. Otherwise, end.

GAPIS returns the estimations ÎT ≈ I and ẐT ≈ Z using
KNT weighted samples.

3.2. Further observations and robust implementation

An important feature of GAPIS is that the adaptation proce-
dure is completely decoupled from the sampling steps. This
is one of the main differences w.r.t. similar techniques like
PMC [6], AMIS [7], or APIS [8]. A second major difference
is the use of information about the first and second derivatives
of the target, which has been extensively exploited by MCMC
algorithms (e.g., by Hamiltonian Monte Carlo methods), but
not in the context of adaptive importance sampling.

Regarding the interaction among the proposal pdfs in Eq.
(5), the simplest choice for Gt = h(t) is a constant value
Gt = G. In this case, the cloud of proposals tends to a static
equilibrium around high probability regions of the target. The
precise final static configuration depends on the initialization
and the choice of G. In order to allow the location of the pro-
posals to converge to the modes of the target pdf, this parame-
ter should be reduced with time, vanishing to zero as t→∞.
A possible simple choice in this case is

Gt = exp (−βt) , (10)

for some β > 0. Another possible choice is Gt = β
β+t , fre-

quently used in stochastic approximation algorithms to pre-
vent the rate from decreasing too quickly [19, 20].

In the previous scenario, the proposal pdfs eventually con-
verge to some modes of the target, thus completely ceasing
their exploratory behaviour. However, some other modes of
the target could be potentially missed, since there is no further
exploratory activity. An alternative is to choose a periodic re-
pulsion term Gt ≥ 0, such as

Gt = sin (2πνt) + ∆, ν ∈ R+,∆ ≥ 1. (11)

This approach combines the advantages of placing the pro-
posal pdfs around the modes for some iterations (when Gt
becomes low and thus hardly any interaction among propos-
als occurs), with an increased range of the reachable sampling
areas when the interaction term Gt increases (and thus high
interaction levels are attained).

Regarding the terms mi and mj in Eq. (5), they can be
simply set as mi = mj = 1. A more sophisticated choice
is making them depend on the scale of the pdf, e.g., mi,t =

tr(C(t)
i ). This choice is motivated by sampling reasons: the

trace of the covariance matrix measures the range of the sam-
pling area of the corresponding proposal. The idea is to avoid
that two proposals cover the same portion of the state space.

In other possible variant of the algorithm, additive white
Gaussian noise could be added to the update equation of µi
in order to facilitate the exploration of the state space and

reduce the dependence on the initial conditions. Then, Eq.
(5) becomes

µ
(t)
i = µ

(t−1)
i + λ∇ log (π(x)) +

N∑
i=1

r
(t−1)
i,j + ηi,

with ηi ∼ N (0, ε) for i = 1, . . . , N . Given the space con-
straints, here we focus on using a periodic repulsion term,
with mi = 1 for 1 ≤ i ≤ N and no noise added to the update
equation. All of the variants mentioned in this section will be
explored in a longer paper in the future.

As a final remark, note that the final locations of the pro-
posal pdfs (i.e., their means, µ(t)

i ) can be used to estimate
the positions of the modes of π(x), and the final covariance
matrices C

(t)
i could be used to estimate their dispersion.

4. EXPERIMENTS

In order to evaluate the performance of GAPIS, we have per-
formed an experiment where the target is a bivariate multi-
modal target pdf formed by a mixture of 5 Gaussians, i.e.,

π(x) =
1

5

5∑
i=1

N (x; νi,Σi), x ∈ R2, (12)

with means ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 = [13, 8]>,
ν4 = [−9, 7]>, and ν5 = [14,−14]>, and covariance ma-
trices Σ1 = [2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2],
Σ3 = [2, 0.8; 0.8, 2], Σ4 = [3, 0; 0, 0.5], and Σ5 =
[2, −0.1;−0.1, 2]. In this example, the moments of the tar-
get in (12) can be easily computed analytically, thus allowing
us to check the performance of the different techniques. For
the sake of simplicity, we also consider Gaussian proposals.

We have run the GAPIS algorithm with N = 100 Gaus-
sian proposals, estimating the mean (with known value
x̄ = [1.6, 1.4]>) and the normalizing constant (Z = 1)
of the target. The means of the proposals have been ran-
domly positioned inside a “bad” area (free from any modes
of the target) in order to test the robustness of the algo-
rithm w.r.t. a bad initialization. In this way, the initial
means of the proposals are selected uniformly within a
square µ

(0)
i ∼ U([−4, 4] × [−4, 4]). Initially, the same

isotropic covariance matrix, C
(0)
i = σ2I2, is used for ev-

ery proposal. We test different values of σ ∈ {1, 5, 10}.
Then, different non-isotropic diagonal covariance matri-
ces, C

(0)
i = diag(σ2

i,1, σ
2
i,2) with σi,j ∼ U([1, 10]) for

i = 1, . . . N and j ∈ {1, 2}, are also tested.
We run the GAPIS algorithm with different number of it-

erations T ∈ {100, 400}. In order to perform a fair compari-
son, the total number of samples drawn in all the simulations
is the same, i.e., we set L = KNT = 2 · 105 samples and
chooseK = L/(NT ) ∈ {20, 5}. Regarding the gradient step
of (4) we set λ = 1, whereas the “masses” in (5) are set to
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Algorithm Spec. parameters σ= 1 σ= 5 σ= 10 σi,j ∼ U([1,10])

MIS K = 2000 T = 1 41.95 2.17 0.0147 4.55
PIS K = 2000 T = 1 47.74 0.2424 0.0124 0.0651

GAPIS K = 5 T = 400 0.0024 0.0022 0.0008 0.0012
K = 20 T = 100 0.0031 0.0068 0.0021 0.0050

GAPIS (fixed Ci)
K = 5 T = 400 0.0023 0.0104 0.0178 0.0040
K = 20 T = 100 0.0440 0.0103 0.0143 0.0048

APIS Best [21] 2.45 0.2424 0.0185 0.0045
PMC Best [21] 107.58 0.6731 0.0744 0.0732

Table 1. MSE in the estimation of the mean of the target (first component), for several values of the initial σ and different
techniques, keeping fixed the total number of evaluations of the target L = KNT = 2 · 105 (with N = 100 proposal pdfs).
The best results for each value of σ are highlighted in bold-face.

mi = 1 ∀i and the interaction term Gt is a periodic function,
as discussed in Subsection 3.2, with ν = 0.05 and ∆ = 1.04.

We compare the performance of GAPIS with two static
schemes, where no adaptation is performed (i.e., T = 1):
a standard multiple importance sampler (MIS) and another
static approach where the deterministic mixture is applied,
so called population importance sampler (PIS) [21]. We also
compare GAPIS with other state-of-the-art adaptive methods,
such as APIS and PMC. The results displayed for APIS and
PMC correspond to the choice of parameters that lead to the
best performance, as shown in [21]. Finally, we also consider
a GAPIS scheme where the location parameters of the pro-
posal pdfs are adapted, but their scale parameters are fixed.

Table 1 shows the mean square error (MSE) in the es-
timation of the first component of the mean of the target.
All the results are averaged over 1000 independent experi-
ments. GAPIS largely outperforms the non-adaptive standard
IS methods. The best results are obtained when the mean
and the covariance matrices are updated with K = 5 and
T = 400. Note that, as discussed in Section 3.2, the extra
computational cost depends on the number of iterations T ,
since the means and the covariance matrices of the proposals
are adapted at the beginning of each iteration. Table 1 also
shows that GAPIS is robust w.r.t. the initial choice of the co-
variance of the proposals. Indeed, since both the mean vectors
and the covariance matrices are adapted by GAPIS, after few
iterations the proposals are always suitably placed and scaled
regardless of the initialization.

Figure 1 shows the MSE evolution in the estimation of
the first component of the target described above for GAPIS,
PIS, and APIS (with the parameters that result in the best
performance, as found in [21]). GAPIS has been run with
T = 100 (K = 20) and T = 400 (K = 5), and the num-
ber of proposals is N = 100 in both cases. All the meth-
ods have been simulated with the same number of samples
(L = KNT = 2 · 105) and the MSE curves have been
averaged over 1000 independent experiments. The results
show that all the adaptive schemes outperform the static PIS.
GAPIS works better in terms of MSE when more adaptations

0 0.5 1 1.5 2
x 10

5

10
−3

10
−2

10
−1

10
0

10
1

10
2

M
S

E

Total number of samples
 

 
GAPIS (T=400)
GAPIS (T=100)
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Fig. 1. MSE evolution in the estimation of the first component
for GAPIS, APIS, and PIS methods.

are performed (T = 400), outperforming APIS in this case,
although at the expense of an increased computational cost
per iteration. Finally, note that GAPIS also seems to exhibit a
better asymptotic behavior than APIS or PIS.

5. CONCLUSIONS

In this work, we have presented a novel adaptive impor-
tance sampling method using jointly a population of proposal
pdfs. The gradient adaptive population importance sampling
(GAPIS) is an iterative importance sampler that dynamically
optimizes the cloud of proposals by using the information
of the gradient and Hessian matrix of the target distribution.
Numerical results have shown the excellent performance of
GAPIS compared to other adaptive importance samplers.
GAPIS also exhibits an attractive robustness with respect
to the choice of the algorithm’s parameters, including the
location and scale of the cloud of proposals.
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