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ABSTRACT

In this paper, we present a robust online subspace estimation
and tracking algorithm (ROSETA) that is capable of identi-
fying and tracking a time-varying low dimensional subspace
from incomplete measurements and in the presence of sparse
outliers. Our algorithm minimizes a robust `1 norm cost func-
tion between the observed measurements and their projection
onto the estimated subspace. The projection coefficients and
sparse outliers are computed using ADMM solver and the
subspace estimate is updated using a proximal point itera-
tion with adaptive parameter selection. We demonstrate using
simulated experiments and a video background subtraction
example that ROSETA succeeds in identifying and tracking
low dimensional subspaces using fewer iterations than other
state of art algorithms.

Index Terms— Online subspace Identification, subspace
tracking, low-rank matrix recovery, robust PCA, background
subtraction

1. INTRODUCTION

The problem of identifying and tracking low-dimensional
subspaces embedded in high dimensional data arises in
many applications such as video background subtraction [1],
anomaly detection [2], motion segmentation [3], collabora-
tive filtering [4–6], and target localization [7]. For example,
the video scene captured by a stationary or moving camera
can be separated into a low rank component spanning the sub-
space that characterizes the background scene, and a sparse
component corresponding to moving objects in the video
scene.

Classical approaches to low dimensional subspace iden-
tification first organize the data into a matrix and then com-
pute basis vectors that span the target subspace using a va-
riety of techniques that involve low rank matrix factoriza-
tion [5,6,8–11]. Robust extensions of these techniques factor
the matrix into a low rank component corresponding to the
target subspace as well as a sparse component that captures
the noise [1, 10, 12, 13]. However, when the dimensionality
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of the data becomes too large as is the case with recommen-
dation systems that monitor internet traffic [4], or when data
arrives in streaming form and latency is an issue, as in the
case of high definition video, it becomes necessary to de-
velop online algorithms that can detect and track the target
subspace as the data arrives even when the data streams are
incomplete and corrupted by sparse noise. Another important
benefit to online algorithms arises if the target subspace varies
over time, in which case the subspace can no longer be repre-
sented by a low rank matrix when the data is grouped into a
matrix.
1.1. Related Work
Recently, several algorithms have been proposed to address
the online subspace estimation problem from incomplete ob-
servations [14–20]. The GROUSE algorithm [14] uses rank-
one updates of the estimated subspace on the Grassmannian
manifold. The PETRELS algorithm [15] minimizes the geo-
metrically discounted sum of projection residuals on the ob-
served entries per time index, via a recursive procedure with
discounting for each row of the subspace matrix. However,
neither of these algorithms are designed to be robust to data
corruption or non-Gaussian distributions of noise. More re-
cently, the GRASTA algorithm [16], or robust GROUSE, also
uses updates on the Grassmannian manifold using a robust `1-
norm cost to recover from outliers in the observations. Other
robust online PCA techniques include recursive projection in
ReProCS [17], bilinear decomposition [18], and adaptive pro-
jected subgradient STAPSM [19]. These algorithms either
do not handle missing data or require relatively accurate ini-
tial estimates of the target subspace. Finally, our method is
closely related to the OR-PCA algorithm [20] which uses al-
ternating minimization to compute the subspace coefficients
and sparse outliers followed by stochastic gradient updates of
an `2 regularized least squares cost to track the subspace. Our
technique differs from [20] in that we employ ADMM to es-
timate the subspace coefficients and sparse outliers followed
by a proximal gradient update with adaptive step size to track
the subspace.

1.2. Contributions
In this paper, we propose a robust online subspace estimation
and tracking algorithm (ROSETA) that learns a low dimen-
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sional subspace from incomplete streaming measurements
that may be corrupted with non-Gaussian noise. We formally
define our problem and set the notation in section 2. Section
3 discusses the details of our algorithm which minimizes a
robust `1 norm misfit function between the observed mea-
surements and their projection onto the estimated subspace
to compute the projection coefficients and sparse outliers.
The subspace is then updated using proximal point least
squares estimation with adaptive parameter selection. Our
approach is inspired by the PETRELS algorithm in that it
does not restrict the subspace update to the Grassmannian,
and by the GRASTA algorithm in the selection of its adap-
tive step size. Moreover, our algorithm does not require any
precomputed initial estimate of the target subspace. Finally,
we demonstrate in section 4 the superior performance of our
algorithm over GRASTA and OR-PCA in identifying and
tracking stationary and dynamic subspaces from incomplete
measurements and noisy outliers.

2. PROBLEM FORMULATION

2.1. Problem statement

We consider the problem of identifying at every time t an r-
dimensional subspace Ut in Rn with r � n that is spanned by
the columns of a rank-r matrix Ut ∈ Rn×r from incomplete
and noisy measurements

bt = Ωt(Utat + st), (1)

where Ωt is a selection operator that specifies the observ-
able subset of entries at time t, at ∈ Rr are the coefficients
specifying the linear combination of the columns of Ut, and
st ∈ Rn is a sparse outlier vector.

When the subspace Ut is stationary, we drop the subscript
t from Ut and the problem reduces to robust matrix comple-
tion or robust principal component analysis where the task is
to separate a matrix B ∈ Rn×m into a low rank component
UA and a sparse component S using incomplete observations

BΩ = Ω(UA+ S).

Here the columns of the matricesA and S are respectively the
vectors at and st stacked horizontally for all t ∈ {1 . . .m},
and the operator Ω specifies the observable entries for the en-
tire matrix B.

2.2. GRASTA

GRASTA addresses the system in (1) using a robust `1 norm
cost to quantify the subspace error. The algorithm proceeds
by fixing the Ut and minimizing the augmented Lagrangian

L(st, at, yt) =

‖st‖1 + yTt (bt − Ω(Utat + st)) + µ
2 ‖bt − Ω(Utat + st)‖22,

(2)

where yt is the dual vector, and µ is a regularization constant.
The subspace matrix Ut is then updated by taking a gradient
step on the Grassmannian geodesic using the augmented La-
grangian (2) as the loss function (See section 3.2.2 of [16] for
details). Of particular interest in GRASTA is the selection of
an adaptive step size that leverages precise convergence for a
stationary subspace as well as fast adaptation to a changing
subspace. We develop a similar adaptive parameter selection
strategy in our proposed approach to achieve the precision and
adaptability goals at an even faster rate.

3. ROBUST ONLINE SUBSPACE ESTIMATION AND
TRACKING

We describe in this section our proposed robust online sub-
space estimation and tracking algorithm (ROSETA).

3.1. Augmented Lagrangian with proximal point

ROSETA aims to minimize an augmented Lagrangian with a
robust `1 norm cost in addition to a smoothing term that main-
tains the proximity of the update to the pervious subspace es-
timate over the variables (Ut, st, at, yt). Our objective cost is
given by the following expression

L′(Ut, st, at, et, yt) = ‖st‖1 + yTt (bt − (Utat + st + et))

+µ
2 ‖bt − (Utat + st + et)‖22 + µ

2 ‖Ut − Ut−1‖22,
(3)

where et is supported on the complement of Ωt, hereby de-
noted Ωct , such that Ωt(et) = 0 and Ωct(et) = −Ωct(Utat).

Note that the above term in (3) is non convex in the vari-
ables Ut and at. Therefore, we follow the PETRELS and
GRASTA approach of alternating the minimization over the
variables (st, at, yt) on the one hand, andUt on the other. No-
tice that by fixing Ut, the minimizers of (3) and (2) are equal,
i.e.

(st, at, yt) = arg min
s,a,y
L(s, a, y) = arg min

s,a,e,y
L′(Ut−1, s, a, e, y).

(4)
The variable Ut is then updated by taking a gradient step to
minimize the function

F(Ut) =
1

2
‖bt − (Utat + st + et)‖22 +

1

2
‖Ut −Ut−1‖22 (5)

using an adaptive µ.

3.2. ROSETA

In the first stage, ROSETA uses an ADMM algorithm [21] to
solve (4). The variables at, st, and yt are computed by iterat-
ing until a stopping criterion is met the following sequence of
updates:

akt = U†t−1

(
bt − sk−1

t − ek−1
t + 1

µt−1
yk−1
t

)
ekt = −Ωct

(
Ut−1a

k
t

)
skt = S 1

µt−1

(
bt − Ut−1a

k
t − ekt − 1

µt−1
yk−1
t

)
ykt = yk−1

t + µt−1

(
bt − Ut−1a

k
t − skt − ekt )

)
,

(6)
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where Sτ (x) = sign(x)·max{|x|−τ, 0} denotes the element-
wise soft thresholding operator with threshold τ , k indicates
the iteration number, and † is the Moore-Penrose pseudo-
inverse of a matrix.

In the second stage, the variable Ut is computed by mini-
mizing (5) using the update

Ut =
µt−1

µt

(
Ut−1 + (bt − st − et)aTt

) (
Ir + ata

T
t

)−1
,

(7)
where Ir is an r × r identity matrix, and µt is updated adap-
tively as will be discussed in the following section.

3.3. Adaptive parameter selection

Inspired by the adaptive step size selection in GRASTA, we
developed a corresponding adaptive parameter for ROSETA.

Contrary to GRASTA, our parameter is specifically the
regularizer µt. The regularizer µt controls the speed of con-
vergence of the subspace estimate. In particular, a smaller
value of µ allows for faster adaptability of Ut to a changing
subspace (larger descent direction), whereas a larger value of
µ only permits a small variation in Ut. Consider the descent
direction

Dt =
(
Ut−1 + (bt − st − et)aTt

) (
Ir + ata

T
t

)−1 − Ut−1

(8)
and compute its projection onto the orthogonal complement
of the previous subspace estimate to obtain the subspace up-
date

Gt = (I − Ut−1U
†
t−1)Dt. (9)

The parameter µt can then be updated according to

µt =
C2−l

1 + ηt
, (10)

where ηt = ηt−1 + sigmoid
(

〈Gt−1,Gt〉
‖Gt−1‖F ‖Gt‖F

)
, and l ∈

{−1, 0, 1, 2} is set according to pre specified thresholds for
ηt. Here sigmoid(x) = f + 2f/(1 + e10x), for some prede-
fined f .

Similar to GRASTA, the intuition behind choosing such
an update rule comes from the idea that if two consecutive
subspace updates Gt−1 and Gt have the same direction, i.e.
〈Gt−1, Gt〉 > 0, then the target subspace is still far from the
current subspace estimate. Consequently, the new µt should
be smaller to allow for fast adaptability which is achieved by
increasing ηt. Similarly, when 〈Gt−1, Gt〉 < 0, the subspace
update seems to bounce around the target subspace and hence
a larger µt is needed. Note that when the product of the norms
of the subspace updates (‖Gt−1‖F · ‖Gt‖F ) is too small, e.g.
smaller than 10−6, we assume that our subspace estimate is
close to the target and we force ηt to decrease by the magni-
tude of the sigmoid. The ROSETA algorithm is summarized
in Algorithm 1.

Algorithm 1 Robust Subspace Estimation and Tracking

1: Input Sequence of measurements {bt}, ηLOW, ηHIGH

2: Output Sequences {Ut}, {at}, {st}
3: Initialize U0, µ0, η0, l = 0
4: for t = 1 . . . N do
5: Solve (4) using ADMM:
6: while not converged do
7: akt = U†t−1

(
bt − sk−1

t − ek−1
t + 1

µt−1
yk−1
t

)
8: ekt = −Ωct

(
Ut−1a

k
t

)
9: skt = S 1

µt−1

(
bt − Ut−1a

k
t − ekt − 1

µt−1
yk−1
t

)
10: ykt = yk−1

t + µt−1

(
bt − Ut−1a

k
t − skt − ekt )

)
11: end while
12: Compute adaptive step-size:
13: Dt =

(
Ut−1 + (bt − st − et)aTt

) (
Ir + ata

T
t

)−1

14: Gt = (I − Ut−1U
†
t−1)Dt

15: ηt = ηt−1 + sigmoid
(

〈Gt−1,Gt〉
‖Gt−1‖F ‖Gt‖F

)
16: l =

{
min{l + 1, 2}, if ηt ≥ ηHIGH

max{l − 1,−1}, if ηLOW ≤ ηt ≤ ηHIGH

17: µt = C2−l

1+ηt
18: Update subspace estimate:
19: Ut = µt−1

µt

(
Ut−1 + (bt − st − et)aTt

) (
Ir + ata

T
t

)−1

20: end for

4. NUMERICAL EXAMPLES
We tested the performance of ROSETA in tracking syntheti-
cally generated stationary as well as rotating subspaces in the
presence of sparse outliers. We also tested its performance in
extracting the stationary background of a video sequence and
separating out the moving foreground objects. We also com-
pare the performance of ROSETA to that of GRASTA [16]
and OR-PCA [20]. We note here that we first implemented
ORPCA according to its description in [20] but found that the
algorithm fails to converge. Therefore, we modified the algo-
rithm by changing ãj to aj in the basis update step [20, equa-
tion (9)] to allow convergence, and applying a discount factor
γ = 0.5 to past observations of the matrices At and Bt to
speed up convergence. Also note that OR-PCA requires fully
sampled measurements so we do not present its performance
in the subsampled case.The distance between the estimated
subspace and the target subspace is measured using the rela-
tive error between the projection matrices of the estimated Ut
and the target U∗t given by

Errort =
‖UtU†t − U∗t U

∗†
t ‖F

‖U∗t U
∗†
t ‖F

(11)

In all our experiments, we use the following parameters for
ROSETA: C = 8, η0 = 99, µ0 = C

1+η0
, ηLOW = 50,

ηHIGH = 100, f = 100. We also add the condition that
if (‖Gt−1‖F · ‖Gt‖F ) < 10−6, then l is updated such that

l =

{
max{l − 1,−1}, if ηt ≤ ηLOW

min{l + 1, 2}, if ηLOW ≤ ηt ≤ ηHIGH
.
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4.1. Synthetic examples

In the first experiment, we simulate streaming measurements
from one stationary subspace followed by a sudden jump to a
second subspace. We generate 3000 random streaming mea-
surements {bt}t=1:3000 from two stationary subspaces each of
dimension 20 in R500 spanned by the columns of two random
matrices U∗(1), U∗(2) ∈ R500×20 each having orthogonal
columns. The first 1500 measurements belong to the subspace
spanned by U∗(1) and the second 1500 belong to the subspace
spanned by U∗(2), such that, {bt}1:1500 = U∗(1)at + st and
{bt}1501:3000 = U∗(2)at + st, where at are Gaussian ran-
dom vectors in R20, and st ∈ R500 are sparse outlier vectors
with nonzero Gaussian random coefficients in 20% of their
entries. Fig. 1(a) compares the subspace estimation error
averaged over 10 runs of ROSETA, GRASTA, and OR-PCA.
Fig. 1(b) illustrates the estimation error for both algorithms
when every column in bt is subsampled by 50%. Notice how
in both cases, the estimation error of ROSETA (blue line)
decreases faster than that of GRASTA (red line).
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Fig. 1: Subspace estimation error averaged over 10 runs of
ROSETA (blue), GRASTA (red), and OR-PCA (green) in
identifying a stationary subspace in R500×20 corrupted by
20% sparse outliers with a sudden jump at t = 1500 from (a)
fully sampled measurements, and (b) 50% subsampled mea-
surements.

In the second experiment, we allow the target subspaces
to rotate over time by multiplying U∗(1) and U∗(2) by a skew
symmetric matrix R and update U∗t according to U∗t = (I +
δR)U∗t−1, such that, U∗1 = U∗(1) and U∗1501 = U∗(2). Here,
we choose δ = 10−2. The subspace estimation errors of
ROSETA, GRASTA, and OR-PCA are shown in Figs. 2(a-
b) for the fully sampled and 50% subsampled measurements.

4.2. Video background subtraction

Next, we consider the online video background subtraction
problem. We are given a video sequence captured by a sta-
tionary camera. The video scene is generally stationary ex-
cept for foreground moving objects. If we vectorize the video
frames and stack them into a matrix, the resulting matrix can
be decomposed into a low rank component corresponding to
the background and a sparse component corresponding to the
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Fig. 2: Subspace estimation error averaged over 10 runs of
ROSETA (blue), GRASTA (red), and OR-PCA (green) in
identifying a rotating subspace in R500×20 corrupted by 20%
sparse outliers with a sudden jump at t = 1500 from (a) fully
sampled, and (b) 50% subsampled measurements.

foreground moving objects. We compare the performance
of ROSETA and GRASTA in extracting the background of
the Shopping Mall video sequence1. Every video frame is
composed of 320 × 256 pixels. We choose a rank 5 for the
background subspace and initialize U0 for both algorithms to
an 81920 × 5 Gaussian random matrix. Fig. 3 demonstrates
ROSETA’s performance in extracting the video background
compared to GASTA. It can be seen that ROSETA succeeds
in capturing the video background much earlier in the video
sequence (frame 41) compared to GRASTA (frame 152).
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Fig. 3: Background subtraction of frames 1, 41, 92, and 152
from the Shopping Mall sequence. Row one shows the origi-
nal four frames. Rows two and three show the background
extracted by ROSETA and GRASTA, respectively. Rows
four and five show the foreground extracted by ROSETA and
GRASTA, respectively.

1Available from:
http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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