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ABSTRACT

The Histogram-Probabilistic Multi-Hypothesis Tracker
(H-PMHT) is an efficient multi-target tracking approach
to the Track-Before-Detect (TkBD) problem. However, it
cannot adequately deal with fluctuating targets and this can
degrade track management performance. By assuming an
alternative measurement model based on a Poisson distribu-
tion, the H-PMHT algorithm can be re-derived to incorporate
a time-correlated estimate of the component mixing terms,
allowing for an improved measure for track quality.

Index Terms— Track-Before-Detect

1. INTRODUCTION

The H-PMHT is an efficient TkBD algorithm [1, 2] that is
based on the extension of the Probabilistic Multi-Hypothesis
Tracker (PMHT) [3] to intensity modulated data. The
H-PMHT inherently assumes a multi-target scenario but re-
tains linear complexity with the number of targets.

The H-PMHT algorithm is based on the generation
of a synthetic histogram by quantising the energy in the
sensor data followed by the application of Expectation-
Maximisation (EM) [4] mixture modeling to describe the
underlying data sources. The quantisation step converts the
continuous-valued measurement data in each pixel into an
integer-value, which is interpreted as a count of the number
of shots that fell in each pixel. The counts in each pixel are
assumed to follow a multinomial distribution.

The H-PMHT can be applied to a wide range of prob-
lems as long as an appropriate state estimator exists to per-
form the maximisation step of the EM algorithm. In the case
when both the target dynamics and measurement models are
assumed to be linear with Gaussian noise, a Kalman Filter
(KF) can be incorporated into the H-PMHT to perform the
state estimation component of the algorithm [5–7]. More re-
cently, H-PMHT has been applied to non-linear non-Gaussian
problems using non-linear state estimation techniques [8, 9].

The H-PMHT employs EM methods to estimate the tar-
get states as well as each target’s contribution to the overall
mixture model. The target mixing proportion terms can be in-
terpreted as the received power from each target, and can be

used as a natural test statistic for track quality. Under multi-
nomial assumptions, the H-PMHT models the mixing propor-
tions as unknown parameters that can be time-varying or con-
stant with time. The H-PMHT also assumes that the number
of targets is known and remains invariant with time. These
assumptions are too restrictive for most practical applications
as targets commonly appear and disappear from surveillance
regions and target signal-to-noise ratio (SNR) can fluctuate
with time.

In conventional target tracking, this problem was ad-
dressed by introducing a time-correlated SNR estimate into
the PMHT by imposing a dynamics model on the component
mixing proportions [10]. Although an improvement in track-
ing accuracy was observed, the coupling of the mixing terms
resulted in an exponential complexity with the number of tar-
gets. Recently, Davey [11] proposed an alternative derivation
of the PMHT based on a Poisson distribution on the number
of point measurements. Under a Poisson assignment model,
Davey derived a time-correlated SNR estimate based on [12],
to more accurately estimate track existence. An important
feature of this new algorithm is that it also retains linear
complexity with the number of targets.

This paper extends Davey’s work to TkBD applications
and is the first to include a time-correlated SNR measure in
the H-PMHT to more accurately estimate track existence. As
the multinomial assumption in the H-PMHT is consistent with
a Poisson Point Process [13], it is possible to re-derive the
H-PMHT with a Poisson assumption on the number of quan-
tised measurements. The other benefit to this derivation is
that the resulting algorithm retains linear complexity with the
number of targets. This new algorithm is referred to as the
Poisson H-PMHT and is shown to be consistent with the stan-
dard H-PMHT derived under multinomial assumptions.

2. H-PMHT

Assume a scenario in which a sensor observing M targets
collects images Zt = {zit}Ii=1, at discrete times t = 1 . . . T
where zit denotes the energy in the ith pixel of the sensor
image at time t and I denotes the total number of observed
pixels. Let xmt denote the state of component m at time t
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for m = 0 . . .M . As a component can be attributed to ei-
ther a clutter or target object, let m = 0 denote the clutter
component with known distribution G0(τ). Assume that the
remaining components m = 1, . . . ,M are target objects that
evolve according to a known process that may be non-linear
and stochastic.

In the first step of the H-PMHT algorithm, the energy in
each measurement pixel i is quantised to an arbitrary quanti-
sation level. Define the quantised vector corresponding to Zt
as Nt = {nit}Ii=1, where nit denotes the quantised energy or
count of the number of shots in pixel i at time t. The variables
to be estimated are the component states X = x0:M

1:T and their
associated mixing proportions Π = π0:M

1:T , for all components
m and time scans t. The target mixing proportions can be
interpreted as the received power of component m at time t.

Measurement Model: The counts in the quantised image
are assumed to be multinomial distributed where each shot
is assumed to be an independent identically distributed (iid)
random variable following a distribution defined by the den-
sity function, f(τ |x0:M

t ;π0:M
t ). The probability of any shot

falling into pixel i is given by,

f i
(
x0:M
t ;π0:M

t

)
= π0

t h
i(∅) +

M∑
m=1

πmt h
i(xmt ), (1)

where hi(xmt ) denotes the probability that a shot due to target
m falls in pixel i and is defined as the integral of the point
spread function h (τ |xmt ) over Bi, the spatial extent of pixel
i. Similarly, hi(∅) denotes the probability of a clutter shot
falling in pixel i: the integral of G0(τ) over pixel i. The
mixing proportions πmt form a probability vector, i.e. πmt ≥ 0

and
∑M
m=0 π

m
t = 1.

The calculation of the maximum likelihood estimates
(MLEs) are infeasible due to the exponential complexity of
enumerating over all data associations of shots to targets. The
solution is to employ the EM method, which is a general
iterative procedure for calculating the MLE given missing
data. The sensor image does not identify which component
of the mixture gave rise to each shot or the precise location
of the shot within the pixel. In addition, H-PMHT allows for
unobserved pixels that are notionally sensor pixels for which
no data was collected. These variables are treated as missing
data and EM is used to marginalise them out of the problem
and optimise for X and Π. Note that the use of the quantised
measurement Nt rather than Zt is only an intermediate step
in the derivation of the algorithm. Having defined an EM
algorithm at a prescribed quantisation, the derivation then
takes the limit of the quantisation and the original sensor data
Zt is recovered.

At a given time step t, let x̂mt and π̂mt denote the states and
mixing proportions at the previous EM iteration, respetively.
Then, the H-PMHT algorithm employs an iterative procedure
to determine the probability of the missing data (E-step) and
then refines the component and mixing proportions estimates

(M-step). The key steps in the H-PMHT algorithm can be
summarised as follows:

E-Step: The E-step evaluates the conditional expectation
of the logarithm of the complete data likelihood with respect
to the missing data. This is given by the auxiliary function,
which can be decomposed into two separate expressions for
individually estimating X and Π:

QmX = log {p(xm0 )}+

T∑
t=1

||Zt||
Ft

log
{
p(xmt |xmt−1)

}
+

T∑
t=1

I∑
i=1

π̂mt z̄
i
t

f i
(
x̂1:M
t ; π̂0:M

t

) ∫
Bi

h(τ |x̂mt ) log {h(τ |xmt )} dτ,

(2)

Qtπ =

M∑
m=0

I∑
i=1

π̂mt z̄
i
t

f i
(
x̂1:M
t ; π̂0:M

t

)hi(x̂mt ) log{πmt }, (3)

where Ft =
∑I
i=1 h

i
(
x̂1:M
t

)
, which is generally very close

to unity and ||Zt|| =
∑I
i=1 z

i
t denotes the total energy re-

ceived from the image. In addition, define z̄it to be

z̄it =

{
zit i ∈ O,
||Zt|| i ∈ Ō,

(4)

where O is the set of all observed pixels and Ō is the set of
all unobserved pixels, which may be empty [9].

M-Step: The auxiliary function QmX is maximised using
an appropriate state estimator. An analytic expression for the
mixing proportion estimates can be found by employing the
Lagrangian multiplier method to maximise (3) subject to the
normalisation constraint

∑M
m=0 π

m
t = 1 such that,

πmt = pmt

/ M∑
m=0

pmt , (5)

where pmt = π̂mt

I∑
i=1

z̄ith
i(x̂mt )

f i
(
x̂1:M
t ; π̂0:M

t

) .

3. POISSON H-PMHT

The standard H-PMHT makes the implicit assumption that
the number of shots ||Nt|| =

∑I
i=1 nit i.e. number of multi-

nomial trials is known. This is important as it implies that the
unconditional distribution of the counts Nt in the H-PMHT
measurement image can be factored into two distributions: a
multinomial distribution for the counts Nt across pixel cate-
gories i given that the sample size ||Nt|| is known; and a Pois-
son distribution for the overall total number of counts, where
||Nm

t ||, the total number of measurement shots received from
each component m, is Poisson distributed by the thinning
property [14].
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Based on this, the H-PMHT can be re-derived using an
alternative measurement model by assuming that ||Nm

t || is
Poisson distributed with rate intensity parameter λmt . The
component mixing terms can now be estimated using λmt . Let
Λ = λ0:M1:T denote the collection of Poisson mixing rates for
all components m and times t. These mixing rates are now
unknown random variables that need to be estimated. Thus
under a Poisson measurement model, the variables to be esti-
mated are the component states X and their associated Pois-
son mixing rates Λ. The unobserved measurement shots, as-
signments of shots to components, and the precise locations
of each shot in each pixel are still considered to be missing
data.

Under the Poisson measurement model, the procedure for
evaluating the probability of missing data under the EM is
the same as in the standard H-PMHT, except that the density
f(τ |x0:M

t ;π0:M
t ) and per pixel probability f i

(
x0:M
t ;π0:M

t

)
in the standard H-PMHT are now replaced with an intensity
function and per-pixel shot intensity. For further details re-
garding the derivation of the Poisson H-PMHT, refer to [15].

Measurement Model: In a similar way to the standard
H-PMHT, an expression for the underlying intensity in terms
of a mixture model can be formed. The shots now have a dis-
tribution defined by the intensity function, ft(τ |x1:M

t ;λ0:Mt ).
The intensity of shots falling into pixel i is now given by,

fit
(
x0:M
t ;λ0:Mt

)
= λ0th

i(∅) +

M∑
m=1

λmt h
i(xmt ). (6)

We can see that the multinomial mixing proportions πmt in the
original H-PMHT mixture density have been replaced with
the Poisson mixing rates λmt . The key steps for the Poisson
H-PMHT algorithm can be summarised as follows:

E-Step: Again, we can decompose the auxiliary function
into two separate expressions for estimating the component
states X and the Poisson mixing rates Λ. The state auxiliary
function QmX remains unchanged and is given by (2). We can
show that the auxiliary function for Λ simplifies to,

Qmλ = log
{
p(λm0 )

}
+

T∑
t=1

[
log{p(λmt |λmt−1)}

+ log
{
λmt

} I∑
i=1

µimt zit − λt
]
. (7)

M-Step: As in the standard H-PMHT, QmX can be imple-
mented using an appropriate state estimator. To estimate λmt ,
consider a model for the prior p(λm0 ) and its evolution with
time, p(λmt |λmt−1). The well known conjugate prior for the
Poisson distribution is the gamma distribution. We can show
that the posterior distribution for λt simplifies to,

p(λt|Nt) ∝ Gamma(λt;αt|t−1 + ||Nt||, βt|t−1 + 1), (8)

where αt|t−1 and βt|t−1 are the predicted parameters of the
gamma distribution. It is important to realise that under this

formulation, λt is not gamma distributed with updated param-
eters αt and βt, but the values of λt that maximise the aux-
iliary function (7) are the expected values of a gamma distri-
bution, with the following mean E[λt] = αt/βt and variance
Var[λt] = αt/β

2
t . As the EM method performs a maximisa-

tion, it is more appropriate to consider the mode of the gamma
distribution, which is defined as argmax p(λt) = (αt−1)/βt.

Granström [12] provides a framework for the prediction
and update for the parameters of the measurement rate λt. In
the prediction stage, Granström defines a forgetting factor η
that determines how much weight is applied to the past esti-
mates of α and β. As η → ∞, the predictions place more
weight on past estimates and the updated estimates will be
highly correlated with time. This can be beneficial in scenar-
ios in which the target SNR is buried under a high level of
noise, as it is allows for a better average estimate of a target’s
true SNR. In the case when the limit of η → 0, the predicted
gamma parameters also go to zero, and the updated estimates
will be effectively uncorrelated with time. In this case, the
Poisson mixing rates can be approximated by,

λmt = λ̂mt

I∑
i=1

zith
i(x̂mt )

fit
(
x̂1:M
t ; λ̂0:Mt

) , (9)

where λ̂mt is the Poisson mixing rate at the previous EM
iteration. Observe that if we replace the intensity function
fit
(
x1:M
t ;λ0:Mt

)
with the probability f i

(
x1:M
t ;π0:M

t

)
, (9)

is equivalent to the un-normalised multinomial mixing pro-
portions pmt in the standard H-PMHT. We can see that the
H-PMHT algorithm formed under a Poisson measurement
model generalises the H-PMHT under multinomial assump-
tions through the parameter η.

As we have imposed a dynamics model on the Poisson
mixing rates, it is expected that the smoothed estimates of λmt
will provide a more robust measure of track quality than its
multinomial counterpart πmt . Note that the multinomial mix-
ing proportions πmt are dependent through a normalisation
process, while the Poisson mixing rates λmt are calculated
independently due to the Poisson thinning property. This is
important for implementation, as it allows the H-PMHT algo-
rithm under the Poisson measurement model to retain linear
complexity with the number of targets.

4. SIMULATIONS

This section demonstrates and verifies the performance of the
Poisson H-PMHT for a simulated single-target linear Gaus-
sian scenario. It is assumed that the target amplitude follows
a Swerling I model where the average target SNR was set to
17 dB. As we are only considering a linear Gaussian scenario,
it is sufficient to verify the Poisson H-PMHT using a KF for
the target state estimation step. A KF implementation can be
easily integrated into the algorithm in the same way as in the
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(a) η = 1
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(b) η = 3
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(c) η = 10

Fig. 1. Swerling I Scenario: Comparison of the average target SNR for a single run for the standard H-PMHT and Poisson
H-PMHT for varying forgetting factor η.

standard H-PMHT. For both algorithms, it was found that ten
iterations was sufficient to ensure EM convergence.

The average target SNR estimates for the Poisson H-PMHT
were compared with the standard H-PMHT. Figure 1 shows
the estimated SNR in dB for each algorithm for a single run.
The true average target SNR is shown as a solid cyan line and
the instantaneous measured target is in dashed green. The
Poisson H-PMHT was implemented using a forgetting factor
of η = 1, 3 and 10 to investigate the effect of varying the con-
tribution of past estimates on updated estimates. Note that the
performance of the standard H-PMHT is independent of the
forgetting factor η. Both algorithms give similar performance
when η = 1, however as η increases, the SNR estimates
from the Poisson H-PMHT become smoother, giving a better
estimate of the true average target SNR.

When the target amplitude model features instantaneous
fluctuations, the Poisson H-PMHT clearly provides a more
stable prediction of the average target SNR for large η values.
Due to the dynamics model imposed on the Poisson mixing
rates λmt , the SNR estimates are slower to respond to random
fluctuations in the observed target SNR. This can be benefi-
cial for track confirmation as it allows for a more stable test
statistic for track quality. In contrast, the H-PMHT average
SNR estimates are susceptible to variations in the measure-
ment noise as it assumes there is no correlation with time.

By allowing for a forgetting factor term, the Poisson
H-PMHT is also able to reduce the track SNR variance esti-
mates by performing smoothing over a larger time window.
This is evident in Figure 2, which shows the estimated track
SNR variance versus forgetting factor η, averaged over 100
Monte Carlo runs and over all time scans. As stated earlier,
the performance of the standard H-PMHT is independent
of η and thus its variance remains constant in Figure 2. In
contrast, the Poisson H-PMHT decreases as η increases and
consistently gives smaller variance estimates than the stan-
dard H-PMHT. Figure 2 also shows that as η → 0, the per-
formance of the Poisson H-PMHT converges to the standard
H-PMHT. This further verifies that for small η values, the
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Fig. 2. Track SNR variance versus forgetting factor η for
the standard H-PMHT and Poisson H-PMHT averaged over
100 Monte Carlo runs and assuming a Swerling I amplitude
model.

Poisson H-PMHT performance is equivalent to the standard
H-PMHT.

5. SUMMARY

In this paper, we presented an alternative derivation of
the H-PMHT based on a Poisson measurement model and
showed that the resulting algorithm is consistent with the
standard H-PMHT derived under multinomial assumptions.
This new algorithm is referred to as the Poisson H-PMHT and
imposes a dynamics model on the Poisson measurement rate
parameter to allow for a randomly evolving mean target am-
plitude state with instantaneous fluctuations. This enhance-
ment can be used to improve track management performance.
The Poisson H-PMHT is shown to be a generalisation of the
standard H-PMHT through a forgetting factor term.

For a simulated scenario featuring a fluctuating target am-
plitude model, the Poisson H-PMHT is shown to provide a
more consistent measure for track quality with smaller vari-
ance estimates through the forgetting factor term.
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