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ABSTRACT
Random finite set (RFS) based filters such as the cardinalized prob-
ability hypothesis density (CPHD) filter have been successfully ap-
plied to the problem of single sensor multitarget tracking. Various
multisensor extensions of these filters have been proposed in the lit-
erature, but exact update equations for the multisensor CPHD filter
have not been identified. In this paper, we provide the update equa-
tions and propose an approximate implementation. The exact imple-
mentation of the multisensor CPHD filter is infeasible even for very
simple scenarios. We develop an algorithm that greedily searches
for the most likely groups of measurement subsets. This enables
a computationally tractable implementation. Numerical simulations
are performed to compare the proposed filter implementation with
other random finite set based filters.

Index Terms— random finite sets, CPHD filter, multisensor
processing, multitarget tracking

1. INTRODUCTION

In this paper we address the problem of multitarget state estimation
using the measurements generated by multiple sensors. In the ran-
dom finite set (RFS) framework the multitarget state and sensor mea-
surements are modelled as realizations of random finite sets. Various
filters have been developed within this framework for the case when
measurements are generated by a single sensor. Prominent examples
include the probability hypothesis density (PHD) filter [1] and the
cardinalized probability hypothesis density (CPHD) filter [2]. Imple-
mentations of these filters have been successfully applied to single
sensor tracking [3–5], but there has been less progress in developing
accurate and computationally tractable multisensor filters.

The general multisensor PHD filter was first developed by
Mahler [6], but equations were only presented for the two-sensor
case. Delande et al. [7] extended the result to apply to any number
of sensors. Exact implementation is infeasible due to the combina-
torial nature of the filter. Further simplifications or approximations
are required for a computationally tractable algorithm. Delande et
al. [8, 9] have provided filter equations with reduced computational
complexity when there is limited overlap in the fields-of-view of the
different sensors. They describe a particle filter based implementa-
tion. Jian et al. [10] proposed to implement the general multisensor
PHD filter by repetitive application of a two-sensor PHD filter,
but the proposed extension to multiple sensors is unclear. In the
iterated-corrector PHD filter [11] the multisensor information is
processed in a sequential manner. Measurements from the first sen-
sor are processed by the single sensor PHD filter. The output PHD
produced by this step is used as the predicted PHD when processing
measurements from the second sensor and so on. A drawback of
this approach is that the final result depends on the order in which

sensors are processed [12]. An iterated-corrector CPHD filter can
be constructed in a similar fashion. To address the issue of sensor
order dependence, Mahler proposed the product multisensor PHD
and CPHD filters [13]. Although the final results are independent
of sensor order, Ouyang and Ji [14] have reported that Monte Carlo
implementations of these filters are unstable and the problem wors-
ens as the number of sensors increases. We have observed a similar
instability in Gaussian mixture model based implementations.

We make two main contributions in this paper. First, we provide
exact update equations for the general multisensor CPHD filter. Due
to space restrictions we do not include the derivations, but we pro-
vide them in [15]. Exact implementation of the filter is computation-
ally infeasible. In our second contribution, we develop an approx-
imate, computationally tractable implementation using a Gaussian
mixture model. The filter estimates at each time step both the num-
ber of targets and the target state values. We use greedy algorithms
to identify the most likely groupings of the subsets of measurements
associated with each target. By processing only these groupings, we
can drastically reduce the computational overhead without experi-
encing significant degradation in tracking performance.

1.1. Problem Statement

We describe the multisensor multitarget tracking problem in this
section. Let the individual target state at time k be denoted by
xk,i ∈ Rgx for the ith target. The multitarget state is given by the set
Xk = {xk,1, . . .xk,nk

} where nk ≥ 0 is the unknown number of tar-
gets present at time k. The single target state is assumed to evolve ac-
cording to the Markovian transition kernel fk+1∣k(xk+1,i∣xk,i). Let
bk(x) be the target birth intensity function at time k and psv,k(x)
be the single target survival probability.

Information about the multitarget state is available from s
independent sensors. Let Zj

k = {zj1,k,z
j
2,k, . . . ,z

j
mj,k

} be the
measurement set generated by the j-th sensor at time step k.
The measurement set can be empty. Denote by Z1∶s

k the collec-
tion of measurement sets generated by all sensors at time k, i.e.,
Z1∶s

k = {Z1
k , Z

2
k , . . . , Z

s
k}. If a target is present at location x, sen-

sor j detects it with probability of detection pjd,k(x) and generates
a measurement z with probability density (likelihood function)
given by hj,k(z∣x). Denote the probabilty of a missed detection as
qjd,k(x) = 1 − pjd,k(x).

We are interested in forming an estimate X̂k of the multitarget
state at time k given all the measurements up until time k by all the s
sensors denoted by Z1∶s

1∶k = {Z1∶s
1 , Z1∶s

2 , . . . , Z1∶s
k }. More generally,

we would like to estimate the posterior multitarget state distribu-
tion fk∣k(Xk ∣Z1∶s

1∶k). In a CPHD filter setting, we assume that the
posterior multitarget state distribution can be approximated using an
independent and identically distributed cluster (IIDC) process.
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2. GENERAL MULTISENSOR CPHD FILTER

In this section we present the general multisensor CPHD filter. The
filter derivation is based on the following modelling assumptions:
(i) the predicted multitarget distribution at time k + 1 is IIDC; (ii)
the sensor observation processes are independent conditional on the
multitarget state Xk+1, and the sensor clutter processes are IIDC;
(iii) each target generates at most one measurement per sensor at
each time instant; and (iv) each measurement is either associated
with one target or is generated by clutter.

We introduce some notation and quantities before presenting the
filter equations. Let ck+1,j(z) be the clutter spatial distribution and
Ck+1,j(y) be the probability generating function (PGF) of the clut-
ter cardinality distribution of the j-th sensor at time k + 1. Let
Dk+1∣k(x) denote the predicted PHD function and rk+1∣k(x) denote
the normalized predicted PHD function at time k + 1 (normalized so
that it integrates to one). Let the PGF of the predicted cardinality dis-
tribution pk+1∣k(n) be denoted by Gk+1∣k(y). For brevity we drop
the time index and denote

ck+1,j(z) ≡ cj(z), Ck+1,j(y) ≡ Cj(y), pjd,k+1(x) ≡ p
j
d(x)

Gk+1∣k(y) ≡ G(y), qjd,k+1(x) ≡ q
j
d(x)

hj,k+1(z∣x) ≡ hj(z∣x), mj,k+1 ≡mj

Note that abbreviated notation is used only for convenience and the
above quantities are in general functions of time. Throughout the en-
tire paper, for functions a(x) and b(x), the notation a[b] is defined
as a[b] = ∫ a(x) b(x)dx. We use the notation ⟦1, s⟧ to denote the
set of integers from 1 to s.

2.1. CPHD prediction step

The prediction step of the CPHD filter for the multisensor case is
the same as that for the single sensor case. The posterior probability
hypothesis density at time k isDk∣k(x) and the posterior cardinality
distribution is pk∣k(n). The predicted probability hypothesis density
function at time k + 1 is given by [2, 5]

Dk+1∣k(x) = bk+1(x) + ∫
Rgx

psv(w)fk+1∣k(x∣w)Dk∣k(w)dw .

(1)

The predicted cardinality distribution at time k + 1 is given by [2, 5]

pk+1∣k(n) =
n

∑
j=0

pb(n − j)
∞
∑
l=j

(l
j
)
(Dk+1∣k[psv])j(Dk+1∣k[1 − psv])l−j

(Dk+1∣k[1])l
pk∣k(l) ,

where n, j and l are non-negative integers and pb is the cardinality
distribution of the birth process.

2.2. CPHD update step

We now provide the CPHD filter update equations. For derivation
of these equations please refer to the technical report [15]. Let W
be any subset of the measurement set Z1∶s

k+1 such that it contains at
most one measurement per sensor. Think of W as a possible subset
of measurements at different sensors generated by the same target.
Let P be a grouping of disjoint subsetsW . We denote the collection
of all such possible groupings by P . We denote by ∣P ∣ the number
of subsets W in P , and define

∣P ∣j = ∣{z ∈ Zj
k ∶W ∈ P with z ∈W}∣ . (2)

The quantities C(v)j (y) = dvCj(y)
dyv and G(v)

k+1∣k(y) = dvGk+1∣k(y)
dyv

are the vth-order derivatives of the PGFs of the clutter cardinality
distribution and the predicted cardinality distribution, respectively.

We use γ to denote the probability, under the predictive PHD,
that a target is detected by no sensor, and we thus have:

γ = rk+1∣k
⎡⎢⎢⎢⎣

s

∏
j=1

qjd

⎤⎥⎥⎥⎦
. (3)

For concise specification of the update equations, it is useful to have
notation to describe the cardinality component of the weight associ-
ated with a grouping P . Let us define the following quantities:

ψP =
⎛
⎝

s

∏
j=1

C
(mj−∣P ∣j)
j (0)

⎞
⎠
G(∣P ∣)(γ) , (4)

ψ∗P =
⎛
⎝

s

∏
j=1

C
(mj−∣P ∣j)
j (0)

⎞
⎠
G(∣P ∣+1)(γ) , (5)

ψn
P = n!

(n − ∣P ∣)!
⎛
⎝

s

∏
j=1

C
(mj−∣P ∣j)
j (0)

⎞
⎠
γn−∣P ∣ . (6)

Here ψP is the cardinality component of the weight assuming that
at least ∣P ∣ targets are present; ψ∗P assumes additionally that at least
one of these is not detected; and ψn

P is the appropriate weight when
n is the true cardinality of the multitarget set.

Since the measurement subset W includes at most one mea-
surement from each sensor, we can associate with it an index set
TW ⊆ ⟦1, s⟧ which is the collection of sensor indexes which con-
tribute measurements to W . Define:

dW =

rk+1∣k

⎡⎢⎢⎢⎢⎣

⎛
⎝ ∏i∈TW

pid hi(zi)
⎞
⎠

⎛
⎝ ∏j∉TW

qjd
⎞
⎠

⎤⎥⎥⎥⎥⎦
∏

i∈TW

ci(zi)
, (7)

ρW (x) =

⎛
⎝ ∏i∈TW

pid(x)hi(zi∣x)
⎞
⎠

⎛
⎝ ∏j∉TW

qjd(x)
⎞
⎠

rk+1∣k

⎡⎢⎢⎢⎢⎣

⎛
⎝ ∏i∈TW

pid hi(zi)
⎞
⎠

⎛
⎝ ∏j∉TW

qjd
⎞
⎠

⎤⎥⎥⎥⎥⎦

, (8)

α0 =
∑
P ∈P

(ψ∗P ∏
W ∈P

dW)

∑
P ∈P

(ψP ∏
W ∈P

dW)
, αP =

ψP ∏
W ∈P

dW

∑
P ∈P

(ψP ∏
W ∈P

dW)
. (9)

The probability hypothesis density update expression for the general
multisensor CPHD filter is then given by:

Dk+1∣k+1(x)
rk+1∣k(x)

= α0

s

∏
j=1

qjd(x) + ∑
P ∈P

αP ( ∑
W ∈P

ρW (x)) . (10)

The cardinality distribution update expression is given by

pk+1∣k+1(n)
pk+1∣k(n)

=

∑
P ∈P
∣P ∣≤n

(ψn
P ∏

W ∈P
dW)

∑
P ∈P

(ψP ∏
W ∈P

dW)
. (11)
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3. APPROXIMATE IMPLEMENTATION OF THE
GENERAL CPHD FILTER

In this section, we propose a computationally tractable implemen-
tation of the general multisensor CPHD filter. An exact implemen-
tation of the general multisensor CPHD filter is infeasible because
of the prohibitively large size of the collection P . Hence we pro-
pose the following two-step approximation to identify elements ofP
which make significant contribution to the update expressions. The
first approximation is to select a few measurement subsets W for
each Gaussian component that are best explained by that component.
The second approximation step is to greedily construct groupings of
these subsets which are significant for the update step.

3.1. Selecting the best measurement subsets

For this step we assume the following Gaussian mixture model rep-
resentation of the normalized predicted PHD function

rk+1∣k(x) =
Jk+1∣k
∑
i=1

w
(i)
k+1∣kN

(i)(x) , (12)

where N (i)(x) is a Gaussian density function. Consider the mea-
surement subset W and the associated index set TW as defined ear-
lier. For the ith Gaussian component and the measurement subset
W we can associate a weight function β(i)(W ) defined as

β(i)(W ) =

w
(i)
k+1∣kN

(i)
⎡⎢⎢⎢⎢⎣

⎛
⎝ ∏j∈TW

pjd hj(zj)
⎞
⎠

⎛
⎝ ∏j∉TW

qjd
⎞
⎠

⎤⎥⎥⎥⎥⎦
∏

j∈TW

cj(zj)
.

This weight can be intuitively thought of as the ratio of the likelihood
that W was generated by the single target represented by the ith

Gaussian component and the likelihood thatW was generated by the
clutter process. When the measurement subset W is truly generated
by the ith Gaussian component, the weight β(i)(W ) is high. We use
β(i)(W ) to rank measurement subsets for each Gaussian component
and retain only a fraction of them with highest weights.

For each Gaussian component, we select the measurement sub-
sets by randomly ordering the sensors and incrementally incorporat-
ing information from each sensor in turn. We retain a maximum of
Wmax subsets at each step. The algorithm can be visualized in the
form of a trellis diagram. Figure 1 provides a pictorial representa-
tion. The nodes of the trellis correspond to the enumerated sensor
observations (1,2, . . . ) or the no detection case (0). Each column
of the trellis corresponds to observations from one of the sensors.
The sensor number is indicated at top of each column. Each path
through the trellis corresponds to a different measurement subset.
The sequential sensor processing can be demonstrated as follows.
A measurement subset (path) retained after processing observations
from sensor 3 is shown as a solid line passing through nodes 0, 1
and 1 corresponding to sensors 1, 2 and 3 respectively. When pro-
cessing sensor 4 information, this path is extended for each node of
sensor 4 as represented by the dashed line. The weights of these new
measurement subsets (paths) are calculated using the expression for
β(i)(W ) but limited to only the first 4 sensors. This is done for each
existing path in the sensor-measurement space and Wmax measure-
ment subsets with highest weights are retained.

1 2 3 4 5

w
(i)
k+1∣k

0

1

2

3

0

1

2

3

0

1

2

0

1

2

3

0

1

2

Figure 1: Trellis diagram

1

Fig. 1. Trellis diagram

3.2. Grouping of subsets

The algorithm to select groupings of subsets is similar to the above
algorithm used to identify the best measurement subsets. To un-
derstand the algorithm, we can interpret the trellis diagram in Fig-
ure 1 as follows: Each column of the trellis corresponds to the set
of measurement subsets identified by a Gaussian component with
the component number indicated at the top for each column. The
node 0 corresponds to the empty measurement subset W = ∅ which
is always included for each component. We note that not all paths
through this trellis correspond to a valid grouping because of the
constraint that the measurement subsets within a group should be
disjoint. With each valid group (path) P we associate the weight
measure δP = ∏

W ∈P
dW with d∅ = 1.

We greedily identify groupings of subsets by incrementally in-
corporating measurement subsets from the different components.
We process the components in decreasing order of their associated
weights. While performing extension of paths, only those leading
to a valid group are considered. After processing each component,
we retain a maximum of Pmax paths corresponding to the ones with
highest δP . These selected groups of measurement subsets are used
in the update equations (10) and (11) to compute the posterior PHD
and cardinality distribution.

4. NUMERICAL SIMULATIONS

We next compare Gaussian mixture model based implementations
of the different multisensor PHD and CPHD filters. We com-
pare the iterated-corrector PHD (IC-PHD [11]), the product PHD
(P-PHD [13]), the general multisensor PHD (G-PHD [6, 7]), the
iterated-corrector CPHD (IC-CPHD [11]), the product CPHD (P-
CPHD [13]) and the general multisensor CPHD (G-CPHD) proposed
in this paper. The simulation setup is similar to the one in [12].

Target dynamics and parameters: The target tracks are simu-
lated using the constant velocity model [12]. The single target state
is a quadruple consisting of its x and y coordinates and its velocities
along those axes. The targets are moving inside a 2000m × 2000m
square region for 100 time steps. Two targets are present initially
and a third target arrives at time step k = 66 and stays until the
end. The single target survival probability is assumed to be con-
stant over the whole region with ps = 0.99. The cardinality distri-
bution of target births pb is assumed Poisson with mean 0.2. The
target birth intensity function bk+1(x) is a two component Gaussian
mixture with weights 0.1 each and centered at [250,250,0,0] and
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[−250,−250,0,0] with covariance matrix diag([100, 100, 25, 25]).
All targets originate from either of these two locations.

Observation model and parameters: Three sensors (s = 3)
make observations about the targets’ positions (x and y coordinates).
For each sensor, the measurement noise when a target is detected is
additive Gaussian with zero mean and covariance matrix σ2

rI where
I is the identity matrix and σ2

r = 100m2. The clutter process for each
sensor is Poisson with rate λ = 10 and a uniform clutter density over
the monitoring region. Two of the sensors have a fixed probability of
detection pd = 0.95. The probability of detection of the third sensor
is changed gradually from 0.5 to 1 in the simulations. We consider
two different sensor orderings while processing each of the above
filters. In Case 1 the sensor with variable probability of detection is
processed last while in Case 2 it is processed first.

Filter implementation details: The algorithms use a Gaussian
mixture approximation of the PHD, as first employed in [4, 5]. The
simulations were conducted using MATLAB. Pruning and merging
of Gaussian components is performed after processing each sensor
for the iterated-corrector filters. Many of the components have very
small weights and pruning them after processing each sensor has no
significant effect on the tracking accuracy but greatly reduces com-
putation time. For other filters, pruning and merging is conducted at
the end of each time iteration as they process measurement subsets
and we do not have access to the intermediate Gaussian components.

We develop novel implementations of the general multisensor
PHD and CPHD filters to make them computationally tractable. For
both filters, the first step is to find measurement subsets using the
algorithm in Section 3.1 and we use Wmax = 8. Implementation of
the general multisensor PHD filter proceeds by finding all possible
partitions from the given collection of measurement subsets. This
problem can be mapped to the exact cover problem in computer sci-
ence [16]. An efficient algorithm called Dancing Links has been
suggested by Knuth [17] for solving this problem. We use an open
source implementation of this algorithm in the C programming lan-
guage [18]. For the general multisensor CPHD filter, we perform
grouping of measurement subsets using the algorithm described in
Section 3.2. We select a maximum of Pmax = 25 groups of mea-
surement subsets in our implementation. For the CPHD filters, the
cardinality distribution is assumed to be zero for n > 20.

Results and discussion: We use the OSPA error metric [19]
to compare the tracking estimates of different filters. For the OSPA
metric, we set the cardinality penalty factor c = 100 and power p = 1.
For the PHD filters, we estimate the number of targets by rounding
the sum of weights of the Gaussian components to the nearest in-
teger. For the CPHD filters, we estimate the number of targets as
the peak of the posterior cardinality distribution. For all the filters,
the target state estimates are the centres of the Gaussian components
with highest weight in the posterior PHD. After each time step, we
restrict the number of Gaussian components to a minimum of four
and a maximum of four times the estimated number of targets.

The average OSPA error (calculated from 50 Monte Carlo sim-
ulations) is shown in Figure 2(a) for the different filters as a function
of the probability of detection pd of the variable sensor. Both the
product PHD and the product CPHD filters have significantly higher
error because of the unstable nature of their update equations. The
IC-PHD filter is sensitive to sensor ordering; processing the sensor
with low probability of detection last (Case 1) leads to a significant
deterioration in its performance. For the remaining filters the impact
of sensor ordering is minimal. A portion of Figure 2(a) is expanded
and shown in Figure 2(b) for clarity. The G-PHD filter and the IC-
CPHD filter have comparable performance. The average OSPA error
is lowest for the G-CPHD filter proposed in this paper with about

0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

Pd

A
ve

ra
ge

 O
S

P
A

 E
rr

or

 

 
IC−PHD
P−PHD
G−PHD
IC−CPHD
P−CPHD
G−CPHD

(a)

0.5 0.6 0.7 0.8 0.9 1
7

8

9

10

11

Pd

A
ve

ra
ge

 O
S

P
A

 E
rr

or

 

 

G−PHD IC−CPHD G−CPHD

(b)

Fig. 2. (a): Average OSPA error versus the probability of detection
pd of the variable sensor. The solid and dashed lines correspond to
Case 1 and Case 2, respectively. (b): A zoomed-in version of the fig-
ure in (a) focusing on the IC-CPHD filter and the general multisensor
PHD and CPHD filters.

10% improvement when compared to the G-PHD or IC-CPHD fil-
ters for lower values of pd. The G-CPHD filter improves over the G-
PHD filter because of the additional cardinality information. It also
outperforms the IC-CPHD filter because it jointly processes groups
of multisensor measurement subsets.

5. CONCLUSIONS

In this paper, we propose update equations for the probability hy-
pothesis density and the cardinality distribution of the general mul-
tisensor CPHD filter. Since the exact equations are computationally
intractable we propose an approximate Gaussian mixture model im-
plementation of the filter. We achieve computational tractability by
restricting the number of measurement subsets for each Gaussian
component and further using a greedy algorithm to identify likely
candidate groupings of the subsets. We demonstrated superiority of
the proposed filter using numerical multitarget tracking simulations.
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