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ABSTRACT

An adaptive online algorithm with a dictionary of observed signals
for kernel principal subspace analysis is presented. A coefficient ma-
trix for eigenfunctions is updated by a recursive least squares (RLS)-
type algorithm and entries in the dictionary are adaptively added /
removed preserving orthogonality of the eigenfunctions. It is shown
that the orthogonalization can be implemented by analytically solv-
able (generalized) eigenvalues of2×2 matrices, instead of the com-
putation of the inverse squared root of matrix having the size of the
dictionary. Numerical example is then illustrated to support the anal-
ysis.

Index Terms— Recursive least squares, kernel principal com-
ponent analysis, subspace tracking

1. INTRODUCTION

Principal component analysis (PCA) is a powerful statistical tool in
areas of signal processing, machine learning, communications, and
biomedical engineering. Principal component (PC) is the one that
maximizes its variance over a set of multivariate signals, and the
problem to find the PC is reduced to the eigendecomposition of the
correlation matrix of signals. The PCA enables us to represent the
signals in a subspace of dimension much lower than the number of
variables.

The PC can be regarded as the output of a linear system, where
the system parameter is given as the eigenvector. In other words,
the traditional PCA assumes that an observed signal is a linearly
generated stochastic process. However, real-world signals and data
are inherently nonlinear and linear PCA sometimes cannot capture
efficient features of the data.

To deal with nonlinear multivariate signals, an efficient and suc-
cessful approach is to use the kernel PCA (KPCA) [1], which is
the PCA constructed in a reproducing kernel Hilbert space (RKHS).
In the standard KPCA, all the observed sample signals are mapped
to the RKHS induced by a reproducing kernel,κ(·, ·), which is a
symmetric positive definite map,RRRd ×RRRd → RRR, called Mercer ker-
nel. In such a setting, the inner produce of two elements in the
RKHS is given as a value of the kernel function. It has been shown
that the KPCA is given as the eigendecomposition of signal of the
Gram matrix,KKK i j = κ(uuui ,uuu j ). This readily implies that the more
we observe signals, the larger the size of the Gram matrix is. This
means that KPCA may require very high computational load when
we have a large number of samples. To avoid the large scale of the
batch processing, several solutions have been proposed. Incremen-
tal KPCA [2, 3] is an extension of the incremental PCA. This needs
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an eigenvalue decomposition at every iteration. The kernel Hebbian
algorithm (KHA) [4] is an online PCA that is an extension of the
generalized Hebbian algorithm (GHA) [5]. Also the learning rate
of KHA has been studied [6], where an annealing-type learning rate
is introduced to accelerate the update speed. Ding et al. addressed
this problem and developed an adaptive KPCA algorithm [7]. How-
ever, this algorithm still needs to solve an eigenvalue problem at each
update, which demands high computational load. Washizawa [8] ad-
dressed the problem to extend KHA to an adaptive algorithm, which
can be classified into the steepest descent type or LMS-type. How-
ever, the algorithm is derived in Hilbert space, and the projection
onto a subspace is necessary to stabilize the algorithm. A recur-
sive least-squares (RLS) type algorithm has also been developed by
Tanaka and coworkers [9].

Another aspect of online kernel methods is the increase of di-
mensions at every iteration. An eigenfunction is a superposition of
kernel functions corresponding to observed sample signals. Thus,
to reduce the computational complexity and the memory size, con-
structing a dictionary of sample signals is necessary [2,8]. However,
updating the dictionary can violate the orthogonality of eigenfunc-
tions. This paper develops an efficient dictionary update algorithm
with preserving the orthogonality. The proposed orthogonalization
is applied to a RLS-type algorithm [9] for principal subspace track-
ing.

2. KERNEL PRINCIPAL COMPONENT/SUBSPACE
ANALYSIS

2.1. Kernel PCA and Its Batch Algorithm

Let H be a RKHS of functions onCCCd, and denote the inner product
by 〈·, ·〉 and the reproducing kernel byκ(·, ·). The principal compo-
nent analysis inH is to find ther functions inH that ‘compress’
observed data as much as possible. Let us denote the set of theser
functions byS = {ϕi ∈ H }r

i=1. These functions can be obtained
by solving an eigenvalue problem given as

Rϕ = λϕ , (1)

whereR is called a correlation operator.
In a RKHS, the kernel principal component analysis (KPCA) [1]

may be formulated in the following way. Suppose that we have a set
of N observed sample signals (vectors) denoted by{uuui ∈ Cd}N

i=1.
Define a function inH associated with theith observed signal as

φi = φ(uuui) = κ(·,uuui) ∈ H . (2)

The empirical correlation operator is given asR= 1
N ∑N

i=1 φiφ∗
i ,where

·∗ denotes the operation defined such that for arbitraryf ,g ∈ H ,
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g∗ f = 〈 f ,g〉. The KPCA is indeed the PCA for the set of func-
tions φi defined in (2). If all the functions in{φi}N

i=1 are linearly
independent, the empirical correlation operator hasN eigenvalues:
λ1 ≥ ·· · ≥ λN 6= 0, and the corresponding eigenfunctions denoted
by ϕ j . The range of the operator defined as

W = [ϕ1, . . . ,ϕr ] (3)

is called the principal subspace of rankr. Inner product〈ϕ j ,φi〉 is
called the jth kernel principal component (KPC) of observed data
uuui ,

From the representer theorem [10],ϕ in (1) is given as a super-
position of the functions associated with the observed signals:

ϕ =
N

∑
i=1

aiφi = Φaaa, (4)

whereaaa = [a1, . . . ,aN]
T and Φ = [φ1, . . . ,φN]. Define the adjoint

as Φ∗ = [φ∗
1 , . . . ,φ

∗
N]

T . By left-multiplying Φ∗ on both sides, (1)
with (4) becomesKKK2aaa= λKKKaaa, where(KKK)i j = 〈φi ,φ j 〉= κ(uuui ,uuu j ) is
called the Gram matrix. Thus, the KPCA is inherently equivalent to
the eigendecomposition of a matrix of sizeN×N [1].

2.2. KPCA With Sample Dictionary

The size ofKKK is determined by the number of observed signals.
Moreover,KKK is basically dense. This implies that for a large number
of samples, the computational complexity for solving the eigenvalue
problem is high. To scale down the problem, we can consider the
PCA in the subspace spanned by a subset of samples,{φπ(i)}M

i=1
(M ¿ N), whereπ(i) ∈ {1, . . . ,N} is a permutation [3, 11]. An
eigenfunction is then given asϕ = ∑M

i=1aiφπ(i) = Ψaaa, whereΨ =

[φπ(1), . . . ,φπ(M)]. Indeed,aaa is the eigenvector with respect toϕ . By
left-multiplying Ψ∗ on both sides of (1), we obtain

HHHHHHHaaa= λMMMaaa, (5)

whereMMM = Ψ∗Ψ andHHH = Ψ∗Φ. It should be noted that solving the
above equation amounts to the generalized eigenvalue problem of
matrix pair(HHHHHHH ,MMM).

The jth eigenvector is described with the coefficient vector de-
noted byaaa j = [a1 j , . . . ,aM j ]

T as

ϕ j =
M

∑
i=1

ai j ψi = Ψaaa j . (6)

Therefore, the eigenspace spanned by the firstr eigenfunctions is
represented withAAA= [aaa1, . . . ,aaar ]∈CM×r asW = ΨAAA. We callAAA the
coefficient matrixfor W.

2.3. Online KPCA Algorithms

The KPCA needs a set of observed sample signals for the eigen-
decomposition of the Gram matrix. A possible extension of this
batch KPCA is to develop incremental or online algorithms for the
KPCA, where the kernel eigensubspace is updated every time when
a new sample is observed. This type of algorithms can be classi-
fied into three categories: incremental KPCA [2, 3], online Hebbian
KPCA [4], and adaptive KPCA [9, 12]. The underlying idea behind
incremental KPCA algorithms is to apply an eigenvalue decomposi-
tion of augmented operator[W,φN+1]. On the other hand, Hebbian
and adaptive algorithms need no eigenvalue decomposition, which
lead to heavy load of computation. However, the adaptive update

algorithms do not consider the preservation of orthogonality of ker-
nel eigenvectors, say,W∗W = I . In particular, as we will see, the
update of dictionary can violate the orthogonality. The straightfor-
ward orthogonalization is to useW(W∗W)−1/2 instead ofW. The
present paper shows that this operation can be accomplished without
the computation of the inverse of matrix square root.

3. ADAPTIVE KPA WITH DOUBLE
ORTHOGONALIZATION

Again, the operator that gives principal subspace is given as

W = ΨAAA. (7)

Our proposed method is doubly adaptive to the observed samples, as
summarized in the following:

1. Update the dictionary,Ψ, and augment/shrinkAAA, accordingly;

2. Update the coefficient matrix,AAA;

while the orthogonality,W∗W = I is preserved at each step.

3.1. Updating the Dictionary

To determine a subspace that represents a signal, basis functions,Ψi ,
are needed. We will call a set of the basis functions adictionary[13],
and the entries of the dictionary are chosen from observed signals.
If statistics of the signal source is time-variant, the past signal that
has been a member of the dictionary will reduce its significance of
representing samples as the time index increases. Letuuu[k] be a in-
put signal at time instancek, and defineφ [k] = φ(uuu[k]). In the fol-
lowing, when the dictionary is updated by adding or eliminating an
entry, φ [k] = φ(uuu[k]), we address how efficiently the Gram matrix
and its inverse are calculated preserving the orthogonality. Consider
the case where the number of functions in the dictionary does not
exceedL even though a new basis function is added. For simplicity,
the norm of the kernel in a RKHS is assumed to be unity, that is, we
assume thatκ(uuu,uuu) = 1, uuu∈ Rd.

3.1.1. Case of Adding an Entry

We consider the following augmented dictionary operator:

Ψ[k] = [Ψ[k−1],φ [k]]. (8)

In this case,W[k− 1] = Ψ[k− 1]AAA[k− 1] can be also described as
W[k−1] = Ψ[k]BBB[k], where

BBB[k] =

[
AAA[k−1]

0001×r

]
. (9)

Next we discuss the update forMMM[k−1] andPPP[k−1] = MMM−1[k−1].
The update rules will be used for the update ofAAA[k−1], as will be
mentioned later.

First of all, we define

hhh[k] = Ψ∗[k]φ [k], (10)

which gives the representation in the Euclidean space forφ [k] re-
stricted to the subspace determined byΨ[k]. Note that by definition
of the kernel, the last element ofhhh[k] is always unity. Moreover,

hhh[k] can be represented with subvectorĥhh[k] by hhh[k] = [ĥhh
T
[k],1]T .

Together with the fact thatMMM[k] = Ψ∗[k]Ψ[k], and the block matrix
inversion formula to reduce the computational complexity, the fol-
lowing relations are immediately derived:
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Gram matrix

MMM[k] =

[
MMM[k−1] ĥhh[k]

ĥhh
H
[k] 1

]
. (11)

The inverse

PPP[k] =

[
PPP[k−1] 000

000 0

]
+

1

1− ĥhh
H
[k]h̄hh[k]

[
h̄hh[k]h̄hh

H
[k] −h̄hh[k]

−h̄hh
H
[k] 1

]
,

(12)
whereh̄hh[k] = PPP[k−1]ĥhh[k].

Moreover, the computation ofPPP[k]hhh[k] is greatly reduced toPPP[k]hhh[k] =
[000L[k−1],1]

T . It should be emphasized that the orthogonality ofBBB[k]
is maintained.

Proposition 1 (Orthogonality) If W∗[k−1]W[k−1] = I , then

AAAH [k−1]MMM[k−1]AAA[k−1] = III r (13)

andBBBH [k]MMM[k]BBB[k] = III r .

Proof is omitted because it is straightforward.

3.1.2. Case of Eliminating an Entry

Defineψi [k] as theith entry ofΨ[k]. Without loss of generality, as-
sume that the first entry,ψ1[k], is eliminated from the dictionary. Let
l be the number of basis functions in the dictionary before the elim-
ination, and then the update formula isΨ[k] = [ψ2[k−1], . . . ,ψl [k−
1]]:

Gram matrix
MMM[k] = M̄MM, (14)

which is the submatrix of size(l −1)× (l −1) defined in

MMM[k−1] =

[
1 mmmH

mmm M̄MM

]
. (15)

Its inverse

PPP[k] = PPP2:l ,2:l [k−1]− 1
p

ppppppH ,

whereppp is the vector defined in

PPP[k−1] =

[
p pppH

ppp PPP2:l ,2:l [k−1]

]
, (16)

Eliminating an entry of the dictionary causes the violation of
orthogonality. Note thatW′[k− 1] = Ψ[k]ĀAA[k− 1] whereĀAA is the
submatrix defined as

AAA=

[
aaa1

ĀAA

]
, (17)

whereaaai is the ith row vector ofAAA. W′[k− 1] is generally non-
orthogonal,(W′[k−1])∗W′[k−1] 6= I , even thoughW[k−1] is or-
thogonal.

Due to lack of space, we provide only the main result in the
following. We start with defining vectors asaaa = (aaa1)H , andbbb =
1
2aaa+ ĀAA

H
mmm, and matricesCCC= [aaa bbb] andEEE = aaabbbH +bbbaaaH . Let ttt1, ttt2 ∈

C2 be the generalized eigenvectors of matrix pencil(CCCHEEECCC,CCCHCCC).

Proposition 2 (Orthogonality) If W∗[k−1]W[k−1] = I , thenΨ[k]BBB[k]
is orthogonal, where

BBB[k] = ĀAA[k−1]+ ĀAA[k−1]CCC

{
2

∑
i=1

(
1√

1−λi
−1

)
ttt ittt

H
i

}
CCCH . (18)

It should be emphasized that the original problem of orthogonaliza-
tion is reduced to a generalized eigenvalue problem for matrices of
size2×2.

3.1.3. Dictionary Updating Criterion

When we observe signaluuu[k], we determine whether the signal is
added to the dictionary or not, based on the criterion that is called the
coherence-based sparsification rule [13]. In the coherence criteria, if
the following condition

max
1≤ j≤L[k−1]

(Ψ∗[k−1]φ [k]) j ≤ δ , (19)

where0≤ δ < 1 is a threshold that determines the level of sparcity
and the coherence of the dictionary, and(·) j is the jth entry of the
vector. This criterion does not consider eliminating a basis function
from the dictionary. To save the memory, we proposed to fix the size
of dictionary, say, the number of entries of the dictionary, denoted
by L. If the dictionary already hasL entries, we remove the ‘oldest’
entry from the dictionary when a new sample is added based on the
coherence criteria.

3.2. Updating the Coefficients

3.2.1. Square Error Formulation

Principal component analysis inH can be also formulated as the
problem to find the subspace (or basis functions) that give the best
approximation a set of observed samples. Specifically, the solution
of the eigenvalue problem given as in (1) minimizes the approxima-
tion cost:

J0[W] =
N

∑
i=1

‖φi −WW∗φi‖2,

with W = ΨAAA as defined in (7).
Therefore, the optimization problem to findS is reduced to the

one that finds matrixAAA. Define a ‘correlation matrix’ in the Eu-
clidean space asRRR= ∑N

i=1hhhihhh
H
i = HHHHHHH . The minimization ofJ0 is

equivalent to the minimization ofJ1[AAA] given [9] as

J1[AAA] = tr[MMM−1RRR]−2tr[AAAHRRRAAA]+ tr[AAAHRRRAAAAAAHMMMAAA],

whereHHH = Ψ∗Φ was defined in (5). It has been claimed in [14] that
the optimization of this functional amounts to solving the general-
ized eigenvalue problem of matrix pencil(RRR,MMM).

3.2.2. Adaptive Tracking Algorithm

To derive a updating rule at time instancek, we makeAAA, RRR, andMMM
all time-variant and denote them byAAA[k], RRR[k], andMMM[k], respec-
tively. Next we defineΦ[k] = [φ [1], . . . ,φ [k]] : Rk → H , and Let
Ψ[k] : RL[k] → H be an operator consisting ofL[k] functions from
Φ[k]. Note that the time-varyingRRR[k] is the ‘correlation matrix’ in
the subspace represented byΨ[k].

With the defined symbols, the update forAAA[k] at time instancek
can be derived by minimizing the following time-variant cost func-
tion:

Jk[AAA[k]] =tr[MMM−1[k]RRR[k]]−2tr[AAAH [k]RRR[k]AAA[k]]

+ tr[AAAH [k]RRR[k]AAA[k]AAAH [k]MMM[k]AAA[k]],

whereMMM[k] = Ψ∗[k]Ψ[k] andAAA[k] ∈ RL[k]×r . It should be noted that
the representation ofφ [k] with respect ofΨ[k] is given byhhh[k] =
Ψ∗[k]φ [k], and we defineccc[k] = AAAH [k−1]hhh[k].

By differentiatingJk[AAA[k]] with respect toAAA[k], we obtain the
gradient,∂AAA[k]Jk = −2(RRR[k]AAA[k]−MMM[k]AAA[k]AAAH [k]RRR[k]AAA[k]). Define
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Algorithm 1 RLS-type online KPCA algorithm

1: if max1≤ j≤L[k−1](Ψ∗[k−1]φ [k]) j ≤ δ then
2: Ψ[k]← [Ψ[k−1],φ [k]]
3: UpdateMMM[k], PPP[k], andBBB[k−1] by (11), (12), and (9).
4: if # of Ψ[k] more thanL then
5: Ψ[k]← [ψ2, . . . ,ψL].
6: UpdateMMM[k], PPP[k], andBBB[k−1] by (14), (16), and (18).
7: end if
8: else
9: MMM[k] = MMM[k−1], PPP[k] = PPP[k−1], andBBB[k−1] = AAA[k−1].

10: end if
11: hhh[k] = Ψ∗[k]φ [k]
12: ccc[k] = BBBH [k−1]hhh[k]
13: ddd[k] = QQQ[k−1]ccc[k]
14: ggg[k] = ddd[k]/(β +cccH [k]ddd[k])
15: QQQ[k] = β−1

(
QQQ[k−1]−ggg[k]cccH [k]QQQ[k−1]

)
16: eee[k] = PPP[k]hhh[k]−BBB[k−1]ccc[k]
17: AAA[k] = BBB[k−1]+eee[k]gggH [k]

RRRhc[k] = RRR[k]AAA[k] andRRRc[k] = AAAH [k]RRR[k]AAA[k]. Then the optimizer is
given as

AAA[k] = MMM−1[k]RRRhc[k]RRR
−1
c [k]. (20)

Assuming that the dictionary operator does not change at timek,
sayΨ[k] = Ψ[k−1], we updateRRR[k] by

RRR[k] = βRRR[k−1]+hhh[k]hhhH [k]. (21)

Applying the projection approximation [15] given asRRR[k]AAA[k]≈RRR[k]AAA[k−
1], we obtain

RRRhc[k]≈ βRRRhc[k−1]+hhh[k]cccH [k],RRRc[k]≈ βRRRc[k−1]+ccc[k]cccH [k].

Moreover, definingPPP[k] = MMM−1[k] andQQQ[k] = RRR−1
c [k], we can derive

a RLS-type algorithm given in Algorithm 1.

3.2.3. Update Preserving Orthogonality

In Algorithm 1, AAA[k] = BBB[k− 1] + eee[k]gggH [k] obtained in line 17 is
not alwaysMMM[k]-orthogonal even thoughBBB[k−1] is orthogonal. We
may replaceAAA[k] by AAA[k](AAAH [k]MMM[k]AAA[k])−1/2 for orthogonalization.
The basic idea behind this is an extension of the orthonormal PAST
(OPAST) algorithm [16].

Proposition 3 It holds that(AAAH [k]MMM[k]AAA[k])−1/2= III+γ[k]ggg[k]gggH [k],
where

γ [k] =
1

‖ggg[k]‖2

(
1√

1+α[k]‖ggg[k]‖2
−1

)
ggg[k]gggH [k]

By using this lemma and defining,

fff [k] = (γ [k]‖ggg[k]‖2+1)eee[k]γ [k]BBB[k]ggg[k]

we obtain a simple recursive formula given as

AAA[k] = BBB[k−1]+ fff [k]gggH [k]. (22)

Iterations
0 200 400 600 800 1000
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w/o Orthogonalization
KPCA (batch)

Fig. 1. Mean squares error

4. NUMERICAL EXAMPLES

For evaluation, we use benchmark signals that are described by non-
linear difference equations. The signal model is changed during the
iteration to observe the cabability of tracking.

• For k= 2, . . . ,500[13]:
sk =(0.8−0.5exp(−s2

k−1))sk−1−(0.3+0.9exp(−s2
k−1))sk−2+

0.1sin(sk−1π)
• For k= 501, . . . ,1000:

sk =(0.7−0.5exp(−s2
k−1))sk−1−(0.4+0.9exp(−s2

k−1))sk−2+
0.1sin(sk−1π)

Let s0 = 0.1 ands1 = 0.1. We assume that the zero-men Gaussian
noise with the variance of0.01 is added to outputsk. By using such
a generated nonlinear signal, we define the input vector asuuu[k] =
[sk−d+1, . . . ,sk]

T ∈ Rd.
We compare the following algorithms: 1) Proposed RLS-type

algorithm with (22); 2) Case where the orthogonalization is not ap-
plied when updating the basis andAAA[k]. In the numerical test, the
size of vectors is set to 10 (d = 10), and we tracked the principal
kernel subspace of rank 2 (r = 2). We use the Gaussian kernel given
by κ(uuui ,uuu j ) = exp(−0.1‖uuui − uuu j‖2). The coherence threshold is
set to 0.96 (δ = 0.96), and the volume of dictionary is set to 25
(L = 25). Moreover, for all the algorithms, we use the following
initial parameters:Ψ[0] = [φ [0], . . . ,φ [r − 1]], PPP[0] = MMM−1[0], and
AAA[0] = (PPP1/2[0])1:r . We use the forgetting factorβ = 0.98. We
eveluate the approximation performance of the proposed adaptive
KPCA by the mean squared error (MSE) at every time instance:
MSE[k] = N−1 ∑N

i=1‖φi −W[k]W∗[k]φi‖2 whereHHH[k] = Ψ∗[k]Φ.
Figure 1 illustrates the evolution of MSE. We can confirm that

the orthogonalization works very efficiently in stabilizing the track-
ing algorithm. The MSE after convergence is very close to the MSE
with KPCA. Moreover, we can observe that before the 100th iter-
ation, the algorithm without orthgonalization gets nearly diverged.
On the other hand, the proposed orthogonalization can contribute to
stabilization of adaptive kernel principal subspace tracking.

5. CONCLUSION

It has been shown that the proposed adaptive online method with
orthogonalization efficiently works in terms of MSE. Note that the
result obtained in Proposition 2 is applicable to any other online
or incremental kernel principal component algorithms. Numerical
exmples with practical applications will be reported in future.
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