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ABSTRACT an eigenvalue decomposition at every iteration. The kernel Hebbian

An adaptive online algorithm with a dictionary of observed sign(:llsalgoritmn (KHA) [‘.1] Is an c_)nline PCA thatis an extensioq of the

for kernel principal subspace analysis is presented. A coefficient m jeneralized Hebbian _algonthm (GHA) [5]. AI.SO the Iearnln‘g rate

trix for eigenfunctions is updated by a recursive Iea.st squares (RLS?—f KHA has been studied [6], where an annealing-type learning rate
introduced to accelerate the update speed. Ding et al. addressed

type algorithm ar)d entries in the dictionary are adgptively added his problem and developed an adaptive KPCA algorithm [7]. How-
removed preserving orthogonality of the eigenfunctions. Itis shown, o " i algorithm still needs to solve an eigenvalue problem at each

that the orthogonalization can be implemented by analytically solv- ; ) ; ) i
able (generalized) eigenvaluesa% 2 matrices, instead of the com- update, which demands high computational load. Washizawa [8] ad

dressed the problem to extend KHA to an adaptive algorithm, which
%an be classified into the steepest descent type or LMS-type. How-

dictionary. Numerical example is then illustrated to support the anaéver, the algorithm is derived in Hilbert space, and the projection

ysis. onto a subspace is necessary to stabilize the algorithm. A recur-
Index Terms— Recursive least squares, kernel principal com-sive least-squares (RLS) type algorithm has also been developed by
ponent analysis, subspace tracking Tanaka and coworkers [9].
Another aspect of online kernel methods is the increase of di-
1. INTRODUCTION mensions at every iteration. An eigenfunction is a superposition of

kernel functions corresponding to observed sample signals. Thus,
Principal component analysis (PCA) is a powerful statistical tool int0 reduce the computational complexity and the memory size, con-
areas of signal processing, machine learning, communications, affucting a dictionary of sample signals is necessary [2,8]. However,
biomedical engineering. Principal component (PC) is the one tha#Pdating the dictionary can violate the orthogonality of eigenfunc-
maximizes its variance over a set of multivariate signals, and th#0ns. This paper develops an efficient dictionary update algorithm
problem to find the PC is reduced to the eigendecomposition of thiith preserving the orthogonality. The proposed orthogonalization
correlation matrix of signals. The PCA enables us to represent thi applied to a RLS-type algorithm [9] for principal subspace track-
signals in a subspace of dimension much lower than the number ¢#9-

variables.
The PC can be regarded as the output of a linear system, where 2. KERNEL PRINCIPAL COMPONENT/SUBSPACE
the system parameter is given as the eigenvector. In other words, ANALYSIS

the traditional PCA assumes that an observed signal is a linearly
generated stochastic process. However, real-world signals and d&tal. Kernel PCA and Its Batch Algorithm

are inherently nonlinear and linear PCA sometimes cannot capture . d .
efficient features of the data. Let 7# be a RKHS of functions o€%, and denote the inner product

To deal with nonlinear multivariate signals, an efficient and sucPY {,) and the reproducing kernel (-, -). The principal compo-

cessful approach is to use the kernel PCA (KPCA) [1], which ighent analysis ivZ is to find ther functions ins# that ‘compress’
he PCA . ina k I Hil RKH observed data as much as possible. Let us denote the set of these
the PCA constructed in a reproducing kernel Hilbert space ( S) ldnctions by.” — {¢ ¢ #}_,. These functions can be obtained

In the standard KPCA, all the observed sample signals are mapp . . -

to the RKHS induced by a reproducing kemet,,-), which is a Y SOIVing an eigenvalue problem given as

symmetric positive definite majR® x R — R, called Mercer ker- Rp=A9, (1)
nel. In such a setting, the inner produce of two elements in the

RKHS is given as a value of the kernel function. It has been showmhereR s called a correlation operator.

that the KPCA is given as the eigendecomposition of signal of the InaRKHS, the kernel principal component analysis (KPCA) [1]
Gram matrix,Kjj = k(uj,u;j). This readily implies that the more may be formulated in the following way. Suppose that we have a set
we observe signals, the larger the size of the Gram matrix is. Thief N observed sample signals (vectors) denoted{tyye Cd}i’\‘:l.
means that KPCA may require very high computational load wherefine a function in7# associated with thigh observed signal as

we have a large number of samples. To avoid the large scale of the

batch processing, several solutions have been proposed. Incremen- @ =ou) =K(,u) e A @

tal KPCA [2, 3] is an extension of the incremental PCA. This needsl_he empirical correlation operator is givenRs % sN Laq", where
1= b
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g"“f = (f,g). The KPCA is indeed the PCA for the set of func- algorithms do not consider the preservation of orthogonality of ker-

tions @ defined in (2). If all the functions ir{(g}{\‘zl are linearly  nel eigenvectors, saW*W = 1. In particular, as we will see, the

independent, the empirical correlation operator Nasigenvalues: update of dictionary can violate the orthogonality. The straightfor-

AL > - > AN # 0, and the corresponding eigenfunctions denotedward orthogonalization is to us&(W*W)~1/2 instead ofW. The

by ¢;. The range of the operator defined as present paper shows that this operation can be accomplished without
the computation of the inverse of matrix square root.

W=[¢1,...,¢r] (©)
is called the principal subspace of rankInner product(¢;, @) is 3. ADAPTIVE KPA WITH DOUBLE
called thejth kernel principal component (KPC) of observed data ORTHOGONALIZATION
! From the representer theorem [1@]in (L) is given as a super- Again, the operator that gives principal subspace is given as
position of the functions associated with the observed signals: W= WA @)

o= iai a=oa, @) Our proposeq method is (_joubly adaptive to the observed samples, as
& summarized in the following:

wherea — [ar,....ay]T and® — [g,....gn]. Define the adjoint 1. Update the dictio.nfslrw, and.augment/shrink, accordingly;

as®* = [¢f,...,q]". By leftmultiplying ®* on both sides, (1) 2. Update the coefficient matrid;

with (4) become&?a = AKa, where(K)ij = (@, 9;) = k(uj,uj) is  while the orthogonality$y*W = | is preserved at each step.

called the Gram matrix. Thus, the KPCA is inherently equivalent to

the eigendecomposition of a matrix of sidex N [1]. 3.1. Updating the Dictionary

. - To determine a subspace that represents a signal, basis funétjpns,
2.2. KPCA With Sample Dictionary are needed. We will Eall a set of t?le basis funcgtiodmﬁonary[lii],

The size ofK is determined by the number of observed signals.and the entries of the dictionary are chosen from observed signals.
Moreover K is basically dense. This implies that for a large numberlf statistics of the signal source is time-variant, the past signal that
of samples, the computational complexity for solving the eigenvaludias been a member of the dictionary will reduce its significance of
problem is high. To scale down the problem, we can consider theepresenting samples as the time index increasesulkgbe a in-
PCA in the subspace spanned by a subset of samfigs, },  put signal at time instande and definep(k] = @(uK]). In the fol-

(M < N), wheremn(i) € {1,...,N} is a permutation [3, 11]. An lowing, when the dictionary is updated by _addlng or ellmlnatlng_an
eigenfunction is then given a = Zileai%(i) — Wa, whereW = entry, lk] = @(u[k]), we address how efficiently the Gram matrix

[@1)s- - -» @ |- INdeed ais the eigenvector with respectgo By and its inverse are calculated preserving the orthogonality. Consider
|eft(_r$-|7u|ti£)|yigg>q_)* on both sides of (1), we obtain the case where the number of functions in the dictionary does not

exceed. even though a new basis function is added. For simplicity,
HHYa=2 Ma, (5) the norm of the kernel in a RKHS is assumed to be unity, that is, we

assume that (u,u) =1, u € RY,

whereM = W*W andH = W*@. It should be noted that solving the

abov_e eq_uationHamounts to the generalized eigenvalue problem gf; 1 case of Adding an Entry

matrix pair(HH"™ ,M).

The jth eigenvector is described with the coefficient vector de-We consider the following augmented dictionary operator:
noted byaj = [ayj,...,am;]" as

WK = [W[k—1], ¢[K]. (8)
M
- U — WA In this caseW[k — 1] = W[k — 1]JAk — 1] can be also described as
b= 2 mm="a © Wkt o W[k][B[k},]whert[a Ak

Therefore, the eigenspace spanned by the ffigenfunctions is Ak— 1]} ©)

represented withh = [ay,...,a;] € CM*" asW = WA, We callAthe Bk = { O1xr
coefficient matrixor W.

Next we discuss the update stk — 1] andP[k— 1] = M~ L[k —1].
2.3. Online KPCA Algorithms The update rules will be used for the updateAdit — 1|, as will be

) _mentioned later.
The KPCA needs a set of observed sample signals for the eigen- First of all, we define

decomposition of the Gram matrix. A possible extension of this

batch KPCA is to develop incremental or online algorithms for the hlk] = W* [k p[k], (10)
KPCA, where the kernel eigensubspace is updated every time when ) o )

a new sample is observed. This type of algorithms can be classWhich gives the representation in the Euclidean spacepfiof re-
fied into three categories: incremental KPCA [2, 3], online Hebbiarstricted to the subspace determinedy]. Note that by definition
KPCA [4], and adaptive KPCA [9, 12]. The underlying idea behind of the kernel, the last element bfk| is. always unity. AI¥|oreover,
incremental KPCA algorithms is to apply an eigenvalue decomposih[k] can be represented with subvechik] by h[k] = [h' [K],1]T.
tion of augmented operat@, ¢g\.1]. On the other hand, Hebbian Together with the fact tha¥l [k] = W* [k]W[K], and the block matrix
and adaptive algorithms need no eigenvalue decomposition, whidghversion formula to reduce the computational complexity, the fol-
lead to heavy load of computation. However, the adaptive updatwing relations are immediately derived:
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Gram matrix
Mk—1] h[K
M[K = i | (11)
The inverse
_[Pk—1 O 1 hikh" [k —h[K
P[K = B ,
K [ 0 O}+1—ﬁH[k]h[k}[H4[k] 1]
12)

whereh[k] = P[k— 1]h[K].
Moreover, the computation &f[k|h[K] is greatly reduced tB[k|h[k] =

[OL[k,ll,l]T. It should be emphasized that the orthogonalit{
is maintained.

Proposition 1 (Orthogonality) If W*[k—1]W[k—1] =1, then
AMk—1M[k—1JAk—1] = I,

andBH [KIM[KIB[K] = 1.

Proof is omitted because it is straightforward.

13)

3.1.2. Case of Eliminating an Entry

Define yii[K] as theith entry of W[k]. Without loss of generality, as-
sume that the first entryjy; [k], is eliminated from the dictionary. Let

3.1.3. Dictionary Updating Criterion

When we observe signailk], we determine whether the signal is
added to the dictionary or not, based on the criterion that is called the
coherence-based sparsification rule [13]. In the coherence criteria, if
the following condition

max

1
1<j<Lk-1] (19)

(Wk—1g[K); <9,

where0 < & < 1is a threshold that determines the level of sparcity
and the coherence of the dictionary, any is the jth entry of the
vector. This criterion does not consider eliminating a basis function
from the dictionary. To save the memory, we proposed to fix the size
of dictionary, say, the number of entries of the dictionary, denoted
by L. If the dictionary already hds entries, we remove the ‘oldest’
entry from the dictionary when a new sample is added based on the
coherence criteria.

3.2. Updating the Coefficients

3.2.1. Square Error Formulation

Principal component analysis i#¢’ can be also formulated as the
problem to find the subspace (or basis functions) that give the best

I be the number of basis functions in the dictionary before the elimapproximation a set of observed samples. Specifically, the solution

ination, and then the update formula#$k] = [yn[k—1],..., ¢ [k—
1)

Gram matrix _
MK =M, (14)
which is the submatrix of sizé — 1) x (I — 1) defined in
1 m
M[k—l]:[m M} (15)
Its inverse 1
P[k] =P 2 [k_ 1} - B ppH7
wherep is the vector defined in
H
Pk—1= (P P } . 16
[k=1] {P P2y 24[k—1]|” (16)

Eliminating an entry of the dictionary causes the violation of

orthogonality. Note thatV'[k — 1] = W[k]|Alk — 1] whereA is the
submatrix defined as

a'

Al

wherea is theith row vector ofA. W'[k— 1] is generally non-
orthogonal,(W'[k — 1])*W'[k — 1] # |, even thougtW[k — 1] is or-
thogonal.

A= 17)

of the eigenvalue problem given as in (1) minimizes the approxima-
tion cost:

N
W] =5 lla —wwig|?,
i=

with W = WA as defined in (7).

Therefore, the optimization problem to fiod is reduced to the
one that finds matriA. Define a ‘correlation matrix’ in the Eu-
clidean space @ = 3N, hih! = HH™. The minimization ofl is
equivalent to the minimization ok [A] given [9] as

Ji[A] = tr[M~IR] — 2trA" RA] + tr]A" RAAH MA],

whereH = W*® was defined in (5). It has been claimed in [14] that
the optimization of this functional amounts to solving the general-
ized eigenvalue problem of matrix pen¢it, M).

3.2.2. Adaptive Tracking Algorithm

To derive a updating rule at time instanicewe makeA, R, andM

all time-variant and denote them k], R[k], andM[Kk], respec-
tively. Next we defined[k] = [@[1],..., @] : Rk — 7, and Let
Wikl : R — 7 be an operator consisting fK] functions from
®[K. Note that the time-varyin[K] is the ‘correlation matrix’ in

Due to lack of space, we provide only the main result in thethe subspace represented'Bik].

following. We start with defining vectors = (al)”, andb =
%a+KH m, and matrice€ = [ab] andE = ab" +bal. Letty,ty €
C2 be the generalized eigenvectors of matrix pe(€il EC,C"C).

Proposition 2 (Orthogonality) If W*[k—1]W[k—1] =1, thenW[K| B[]

is orthogonal, where

BIK — Alk— 1] + Alk— 1]c{_il (% - 1) tit! }CH. (18)

With the defined symbols, the update k| at time instancé
can be derived by minimizing the following time-variant cost func-
tion:

K[AK)] =tr[M~* [KR[K]] — 2tr[A" [ RIKA[K]
+tr[AH K R AKJAM [KIM K AK]],

whereM[k] = W*[K|W[K andA]k] € RL*T. It should be noted that
the representation of[k] with respect ofV[K] is given byh[k] =

It should be emphasized that the original problem of orthogonalizat* [k [k], and we define[k] = A™ [k — 1]h[k].

tion is reduced to a generalized eigenvalue problem for matrices of

size2 x 2.
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By differentiating J [A[k]] with respect toA[k], we obtain the
gradient,daJk = —2(RKJAK] — M[KIAKIA" K RKAK]). Define



Algorithm 1 RLS-type online KPCA algorithm

L if maxgcj< k-g (W' [k—1@K])j < J then
2. WK« [Wlk—1], g[K]
3. UpdateM[K], P[k], andB[k — 1] by (11), (12), and (9).
4:  if # of W[k] more tharL then
5: W[k] — [l[Jz,...,L[JL].
6: UpdateM (K], Pk, andB[k — 1] by (14), (16), and (18).
;: | end if —w; Oétr:ﬁgonalifati?n
. else —-—-w/o Orthogonalization
9 MK =M[k—1], Pk = P[k—1], andBJk— 1] = Alk— 1]. KPCA (batch)
10: end if 1072 ! ! ! !
1 h%k}] - ;J; Hﬂ q’[ﬁ]h[k] 0 200 40(|)teraﬁongoo 800 1000
12:
ﬁi [[ ng/ éik]H KAK) Fig. 1. Mean squares error
: c
15: Q [k] B~ (Q[k 1] - gkle" K Q[k— 1)
16: e[k] = P[k[h[k] — B[k — 1]c[k] 4. NUMERICAL EXAMPLES
17: Alk] = Bk— 1] +e[k|g" [K]

For evaluation, we use benchmark signals that are described by non-
linear difference equations. The signal model is changed during the

Rnclk = RIKAK] andRo[K| AH [KRKAK. Then the optimizer is iteration to observe the cabability of tracking.
given as e Fork=2,...,500[13]:
AK =M L[KRo[KIR; XK. (20) = (0.8-0.5exp(—§ ;))s1—(0.3+0.9exp~S 1)) 2+
0.1sin(s_17)
e Fork=501,...,100Q
5= (0.7-0.5ex~ 1))Sc1— (0.4+0.9exp~ ;))S2+
0.1sin(s¢_17)
Let sp=0.1 ands; = 0.1. We assume that the zero-men Gaussian
RIK Ak noise with the variance d@.01is added to outpus. By using such
a generated nonlinear signal, we define the input vectarlds=
[Scd41s---,ST €RY
We compare the following algorithms: 1) Proposed RLS-type
algorithm with (22); 2) Case where the orthogonalization is not ap-
plied when updating the basis aidk]. In the numerical test, the
size of vectors is set to 1@l 10), and we tracked the principal
kernel subspace of rank 2£ 2). We use the Gaussian kernel given
by k(uj,uj) = exp(—0.1/ju; — uj|\2). The coherence threshold is

Assuming that the dictionary operator does not change atkjme
sayW[k] = Wk— 1], we updateR[k] by

R[K = BRk— 1]+ h[k]h" K. (21)

Applying the projection approximation [15] given REA[K] ~
1], we obtain

RiclK] & BRiclk— 1] + h[Kc" [K], Re[K] ~ BRe[k — 1] + c[K] e [K].

Moreover, definindP[k] = M~[k] andQ[k] = R; 1[k], we can derive
a RLS-type algorithm given in Algorithm 1.

3.2.3. Update Preserving Orthogonality set to 0.96 § = 0.96), and the volume of dictionary is set to 25
(L = 25). Moreover, for all the algorithms, we use the following
In Algorithm 1, Alk] = B[k — 1] + e[k]g" [k] obtained in line 17 is initial parameters:‘W[0] = [@[0],..., @[r — 1]], P[0] = M~L[0], and

not alwaysM [k]-orthogonal even thougB[k — 1] is orthogonal. We  A[0] = (PY/2[0])1;. We use the forgetting factg8 = 0.98. We
may replaceA[k] by A[k](AH [M[K]A[K])~%/2 for orthogonalization.  eveluate the approximation performance of the proposed adaptive
The basic idea behind this is an extension of the orthonormal PASKPCA by the mean squared error (MSE) at every time instance:
(OPAST) algorithm [16]. MSEK =N"1sN la —W[KW*[Kl@|? whereH [k] = W* [K]®.

Figure 1 illustrates the evolution of MSE. We can confirm that

Proposition 3 It holds that(AH [KIMTKIAIK)~/2 = | KlalkigH 1K, the orthogonalization works very efficiently in stabilizing the track-
posit (A" KMIKA[K) +¥IKglkg™ K ing algorithm. The MSE after convergence is very close to the MSE

where with KPCA. Moreover, we can observe that before the 100th iter-

1 1 ation, the algorithm without orthgonalization gets nearly diverged.
vk = 5 ( — 1> g[k]g” K] On the other hand, the proposed orthogonalization can contribute to

9K | 1+alkglKk[? stabilization of adaptive kernel principal subspace tracking.
By using this lemma and defining, 5. CONCLUSION

£k = (v[K||g[k]||* + 1)ek]ylk|B[KIg[k] It has been shown that the proposed adaptive online method with

orthogonalization efficiently works in terms of MSE. Note that the

we obtain a simple recursive formula given as result obtained in Proposition 2 is applicable to any other online

or incremental kernel principal component algorithms. Numerical

AK =Blk—1]+ f[k]gH K. (22)  exmples with practical applications will be reported in future.
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