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ABSTRACT

This paper studies a Quantized Gossip-based Interactive Kalman
Filtering (QGIKF) algorithm implemented in a wireless sensor net-
work, where the sensors exchange their quantized states with neigh-
bors via inter-sensor communications. We show that with the infor-
mation loss due to quantization, the network can still achieve weak
consensus, i.e., the estimation error variance sequence at a random-
ly selected sensor can converge weakly (in distribution) to a unique
invariant measure. To prove the weak convergence, we first interpret
the error variance sequence evolution as the interacting particle, then
formulate the sequence as a Random Dynamical System (RDS), and
finally prove that it is stochastically bounded.

Index Terms— Distributed signal processing, Kalman filter,
quantization, gossip

1. INTRODUCTION

We consider a dynamic scalar estimation system with multiple sen-
sors constructing a wireless sensor network. We seek a totally dis-
tributed sensing scheme where a reliable estimate of the scalar state
process is computed at each sensor. Some sensors make observations
highly corrupted by noises or even no observations due to the loca-
tions or other factors, which lead to unreliable estimations at individ-
ual sensors if without node collaborations. To mitigate this issue, the
sensors may collaborate with each other, where the collaboration is
achieved by inter-sensor communications within the neighborhood
[1, 2]. In wireless sensor networks, quantization is usually required
before the data is exchanged through inter-sensor communication-
s, since the limited sources, such as bandwidth and power, prevent
the exchange of high precision data (say, real-valued analog data)
among the sensors.

Here we propose a Quantized Gossip-based Interactive Kalman
Filtering (QGIKF) scheme, which is a fully distributed Kalman fil-
tering solution with each sensor executing a local Kalman filter and
at each epoch the state of a sensor (including its local estimation
and error variance) being swapped with one of its neighbors via an
inter-sensor communication channel. Before swapping over on the
channel, the data is quantized. For quantized Kalman filtering in the
literature, in [3], the observation innovation is quantized by either
an iterative binary quantizer or a single-shot batch quantizer, and a
recursive state estimator is introduced. In [4], the quantized Kalman
filters based on quantized observations and quantized innovations are
proposed, and the tradeoff between energy consumption and estima-
tion accuracy is studied. For other quantization based estimation
problems, in [5], an optimal quantization level and transmit power
scheduling strategy for the decentralized estimation at local sensors
in an inhomogeneous sensor network is proposed so as to minimize
the total transmit power. In [6], a distributed adaptive quantization
scheme is proposed to estimate the parameters, where each individu-
al sensor node dynamically adjusts the threshold of its quantizer. In
this paper, we quantize the local estimation and the corresponding
error variance. The quantization procedure adds some noise on the

swapped signal, such that the received state from the neighbor loses
certain information. This makes the problem more challenging and
different from our previous work [7, 8], where we assumed that the
state of a sensor is perfectly transmitted to its neighbor, and we prove
that the estimation error covariance sequence at a randomly selected
sensor converges weakly (in distribution) to a unique invariant mea-
sure by following a GIKF scheme. Then a natural question to ask
is whether or not the estimation error variance sequence could still
achieve weak convergence with the information loss due to quanti-
zation. To seek a positive answer, in this paper we first interpret the
error variance sequences as interacting particles and model each se-
quence evolution as a Random Dynamic System (RDS); we then
prove the stochastic boundedness of the error variance sequence.
Following the properties of RDS, finally we prove the weak con-
vergence of the error variance sequence, i.e., the network achieves
weak consensus.

Notation: We use T,T+,R,R+ to denote the integers, non-
negative integers, reals, and non-negative reals, respectively.

The rest of the paper is organized as follows. The problem is
set up in Section II. The RDS formulation is presented in Section III
and our main results are presented in Section IV. Finally, Section V
concludes the paper.

2. PROBLEM SETUP

2.1. System and Observation Model

We consider a discrete-time linear Gaussian dynamic scalar system
observed by a network of N sensors. The system model is

xk+1 = Fxk + wk+1, (1)

where {xk} is the system state sequence with an initial state x0 dis-
tributed as a zero mean Gaussian variable with variance P̂0|−1, and
{wk} is the system noise sequence, which is an uncorrelated zero
mean Gaussian sequence with variance Q independent of x0.

The observation signal model at sensor n, 1 ≤ n ≤ N , is given
as

yn
k = Cnxk + vnk , (2)

where Cn is the observation scaling factor and the observation noise
{vnk } is another uncorrelated zero mean Gaussian sequence with
variance Rn. These noise sequences at different sensors are inde-
pendent of each other, and independent of both the system noise se-
quence {wk} and the initial system state x0. Suppose we require a
fully distributed solution where a reliable estimate of the system s-
tate process is computed at each sensor. The observations at different
sensors are different in quality due to various locations of the sensors
or other factors, and some sensors may even have no observability
at all as Cn =0. In order to reach certain global agreement locally,
the sensors need to collaborate through inter-sensor communication-
s. We now first establish the inter-sensor communication model, then
discuss the quantization scheme and the QGIKF algorithm.
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2.2. Communication Model

First we model the network as an undirected graph (V, E), where V
denotes the set of N sensors and E denotes the set of edges (valid
communication links), which means that if the sensors n and l can
communicate, E contains the edge (n, l). The graph could be repre-
sented by its N ×N adjacency matrix A as

Anl =

{
1 if (n, l) ∈ E
0 otherwise. (3)

We assume that the diagonal elements of A are identically 1, in-
dicating that a sensor n can always communicate to itself. Note that
E is the maximal allowable set of allowable communication links in
the network across times; however, at a particular instant, each sen-
sor may choose to communicate only to one or a subset of its neigh-
bors. For definiteness, we assume the following generic communi-
cation model, which subsumes the widely used gossip protocol for
real-time embedded architectures [9] and the graph matching based
communication protocols for internet architectures [10]. Define the
set M of symmetric 0-1 N ×N matrices:

M =
{
A

∣∣∣ 1TA = 1T , A1 = 1, A ≤ A
}

1. (4)

Let D be a probability distribution on the space M. The se-
quence of time-varying adjacency matrices {A(k)}, governing the
inter-sensor communication, is then set as an i.i.d. sequence in M
with distribution D. We define the symmetric stochastic matrix A =
E[A(k)] =

∫
M AdD(A), and assume it is irreducible and aperiod-

ic, which implies the connectivity of the network, i.e., the network is
assumed fully connected.

2.3. Quantization Scheme

The quantization scheme adopted in this paper is the dithered quan-
tization [11],where a controlled noise or dither is first added to ran-
domize the value before a uniform quantizer is applied. The detailed
quantization process is stated as follows. The dither v as a random
variable is added to the value x to be quantized; then we adopt a u-
niform quantizer with a quantization step ∆ and apply the countably
infinite quantization alphabet [12] given by Q = {k∆|k ∈ Z}. We
leave the case with finite quantization alphabets to our full journal
version, where the infinite quantization alphabet case could serve
as a performance benchmark to quantify the effect of quantization
noise.

The quantizing function q(·) : R → Q is given as

q(x) = argmin
k∆

|k∆− (x+ v)|. (5)

Then, the quantization noise ε is defined as ε = q(x)− x, while the
quantization error e is e = q(x)− (x+ v). We see that ε = e+ v.
Here we adopt the non-subtractive dithered quantization [13], which
is more practical compared to the subtractive dithered quantization
where ε = e due to the assumption that the receiver knows the dither
signal and subtracts it from the reconstructed value.

If the dither v satisfies the Schuchman conditions [11], the quan-
tization error e is i.i.d. uniformly distributed on [−∆

2
, ∆

2
) and inde-

pendent of the input value x. A sufficient condition for v to satisfy
the Schuchman conditions is that v is i.i.d. uniformly distributed on
[−∆

2
, ∆

2
) and independent of the input value x. In the sequel, we as-

sume v i.i.d. uniformly distributed on [−∆
2
, ∆

2
) and independent of

the input value x; thus e is i.i.d. uniformly distributed on [−∆
2
, ∆

2
)

and independent of the input value x.

1The inequality A ≤ A is interpreted as component-wise.

2.4. QGIKF Algorithm

With the above quantization scheme, we now introduce the quan-
tized gossip-based interacting Kalman filtering (QGIKF) scheme
for distributed estimation of the state process xk over time. Let
the filter at sensor n be initialized by the pair

(
x̂0|−1, P̂0|−1

)
,

where x̂0|−1 denotes the prior estimate of x0 (with no observa-
tion information) and P̂0|−1 is the corresponding error variance.

Also,
(
x̂n
k|k−1, P̂

n
k|k−1

)
denote the prediction of xk at sensor n

based on information till time k − 1 and the corresponding condi-
tional error variance, respectively. The pair

(
x̂n
k|k−1, P̂

n
k|k−1

)
is

also referred to as the state of sensor n at time k − 1. To define
the estimate update rule for the QGIKF, let n→

k be the neighbor
of sensor n at time k w.r.t. the adjacency matrix A(k). We as-
sume that all inter-sensor communications for time k occur at the
beginning of the slot, after the state

(
x̂n
k|k−1, P̂

n
k|k−1

)
is quan-

tized according to the dithered quantization scheme with output
q
(
x̂n
k|k−1, P̂

n
k|k−1

)
. The paired communicating sensors receive

the quantized state from the other and swap their previous states,
i.e., if at time k, n→

k = l, sensor n replaces its previous state(
x̂n
k|k−1, P̂

n
k|k−1

)
by q

(
x̂l
k|k−1, P̂

l
k|k−1

)
and sensor l replaces its

previous state
(
x̂l
k|k−1, P̂

l
k|k−1

)
by q

(
x̂n
k|k−1, P̂

n
k|k−1

)
. After the

above communication is over and a new observation is made, by
the recursion algorithm of Kalman filtering, the estimate update at
sensor n at the end of the slot k executes as x̂n

k+1|k = F x̂n
k|k, where

x̂n
k|k = q

(
x̂
n→
k

k|k−1

)
+Kn

k

[
yn
k − Cnq

(
x̂
n→
k

k|k−1

)]
, (6)

with Kn
k as the Kalman gain [14]. Then for the estimation error

variance, we have

P̂n
k+1|k=E

[(
xk+1−x̂n

k+1|k
)2 ∣∣∣q(x̂n→

k
k|k−1

)
, q
(
P̂

n→
k

k|k−1

)
, n→

k , yn
k

]
.

Due to the limited space, we skip the detail process to calculate
P̂n
k+1|k, which follows the logic of deriving the error variance recur-

sion in the classical Kalman filtering theory [14]. In brief, P̂n
k+1|k

can be recursively computed as

P̂n
k+1|k = F 2P̂n

k|k +Q (7)

where

P̂n
k|k = q

(
P̂

n→
k

k|k−1

)
− 2q

(
P̂

n→
k

k|k−1

)
CnK

n∗
k

+ (Kn∗
k )2

[
C2

nq
(
P̂

n→
k

k|k−1

)
+Rn

]
+ Zn

k (8)

in which Zn
k = ∆2

6
(1−Kn∗

k Cn)
2, and the optimal Kalman gain

Kn∗
k is

Kn∗
k =

[
q
(
P̂

n→
k

k|k−1

)
+ ∆2

6

]
Cn

C2
nq

(
P̂

n→
k

k|k−1

)
+ C2

n
∆2

6
+Rn

. (9)

To prove the property that the estimation error variance at a ran-
domly selected sensor converges in distribution to a unique invariant
distribution, we first study the following algorithm with a subopti-
mal Kalman filter gain Kn

k , then show that the convergence property
is automatically verified in the optimal case after establishing it in
the suboptimal case.
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For the suboptimal case, we choose the gain Kn
k as

Kn
k = q

(
P̂

n→
k

k|k−1

)
Cn

[
C2

nq
(
P̂

n→
k

k|k−1

)
+Rn

]−1

. (10)

Then, according to (7) and (8), we have

P̂n
k+1|k = F 2q

(
P̂

n→
k

k|k−1

)
+Q+ F 2Zn

k

− F 2q
(
P̂

n→
k

k|k−1

)2

C2
n

[
C2

nq
(
P̂

n→
k

k|k−1

)
+Rn

]−1

. (11)

In the sequel, we will study the asymptotic property of the er-
ror variance sequence

{
P̂n
k+1|k

}
in (11) to show that the network

achieves weak consensus.

3. RDS FORMULATION

First, to simplify the notation in (11), we define the function fn as

fn(X) = F 2q (X) +Q− F 2q (X)2 C2
n

[
C2

nq (X) +Rn

]−1

+
∆2

6
F 2

(
1− C2

nq (X)
[
C2

nq (X) +Rn

]−1
)2

. (12)

Then the sequence of error variance P̂n
k+1|k at sensor n iterates ac-

cording to P̂n
k+1|k = fn

(
P̂

n→
k

k|k−1

)
.

3.1. Interacting Particle Representation

To track the sequence
{
P̂n
k|k−1

}
, we adopt the following interacting

particle process to represent it. We will show that by the interacting
particle representation, we can completely characterize and track the
evolution of the sequence

{
P̂n
k|k−1

}
for n = 1, ..., N .

Note that the inter-sensor communication link formation process
given by the sequence {A(k)} can be represented by N particles
moving on the graph as a Markov chain. The state of the n-th particle
at time k is denoted by pn(k), where pn(k) takes value in the state
space [1, ..., N ], and the transition of the n-th particle is given by

pn(k) = (pn(k − 1))→k , pn(0) = n. (13)

Recall that n→
k is the neighbor selection of sensor n at time k. There-

fore, the n-th particle can be considered as originating from node n
and then travelling on the graph according to the link formation pro-
cess {A(k)}.

For each n, the process {pn(k)} is a Markov chain on V =

[1, · · · , N ] with transition probability matrix A. For each of the
Markov chains {pn(k)}, we define a sequence of iteration Pn(k)

with initial state Pn(0) = P̂ (0) as

Pn(k + 1) = fpn(k) (Pn(k)) . (14)

Note that the sequence {Pn(k)} is governed by the Markov
chain {pn(k)}, and from the perspective of the particle, {Pn(k)}
can be considered as a particle originating at sensor n and hop-
ping around the network as a Markov chain with transition prob-
ability A, whose state Pn(k) evolves according to function (14).

With the Markov chain {pn(k)}, the relation between
{
P̂n
k|k−1

}
and {Pn(k)} could be shown as

(P1(k), · · · , PN (k)) =
(
P̂

p1(k)

k|k−1, · · · , P̂
pN (k)

k|k−1

)
, (15)

from which we see that the properties of the sequence of interest{
P̂n
k|k−1

}
could be obtained by studying the corresponding se-

quence {Pn(k)}. Hence, in the sequel, we will study the sequence
{Pn(k)} to show the weak convergence.

3.2. An Auxiliary Sequence: RDS Formulation

Since the Markov chains {pn(k)} are non-stationary, the standard
analysis based on a random dynamical system (RDS) given in [15]
cannot be applied to analyzing {Pn(k)}. We need an auxiliary
sequence of P̃ (k) with a stationary Markov chain {p̃(k)}, which
are defined as: {p̃(k)} is a Markov chain with the transition ma-
trix A and uniform initial distribution P[p̃(0) = n] = 1/N, n =

1, · · · , N . And P̃ (k), with random initial condition P̃ (0), is defined
as

P̃ (k + 1) = fp̃(k)(P̃ (k)). (16)

Now in order to proceed the asymptotic analysis of the auxiliary
sequence of P̃ (k), we can construct a RDS (θR, φR) equivalent to
the auxiliary sequence of P̃ (k) in the sense of distribution. The
construction process is similar to that in our previous paper [7]; so
the details of which are skipped here.

Based on RDS theory, the sequence
{
φR

}
is distributionally e-

quivalent to the sequence of P̃ (k). At this stage, we can analyze the
asymptotic distributional properties of the sequence of P̃ (k) by uti-
lizing the properties in RDSs, which is presented in the next section.

4. MAIN RESULTS

In this section, we first establish some intermediate results and then
two lemmas. Afterwards, by the previously established relation be-
tween the RDS and the error variance sequences, we can show the
weak convergence of these sequences.

The following proposition states two bounded properties to be
used later for proving the lemmas.

Proposition 1

(i) Define an auxiliary sequence {P ′
w(k)}1≤k≤l with initial condi-

tion P ′
w(1) = X and the iterations as

P ′
w(k + 1) = F 2P ′

w(k) +Q−

F 2C2
nk

P ′
w(k)

2(C2
nk

P ′
w(k) +Rnk )

−1 +
∆2

6
F 2. (17)

Define another auxiliary sequence {P ′′
w(k)}1≤k≤l with the same

initial condition P ′′
w(1) = X and the iterations as

P ′′
w(k + 1) = F 2 (P ′′

w(k) + ∆
)
+Q− F 2C2

nk

(
P ′′
w(k) + ∆

)2
×

[
C2

nk

(
P ′′
w(k) + ∆

)
+Rnk

]−1
+

∆2

6
F 2. (18)

Then, we recursively have

P ′′
w(l + 1) < P ′

w(l + 1) +
F 2(F 2l − 1)∆

(F 2 − 1)
. (19)

(ii) For fn(X) defined in (12), we have that fn(X) is upper-bounded
as

fn(X) < F 2[X + Y (∆)] +Q, (20)

where the function Y (∆) = ∆2

6
+∆.
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The proof is based on the monotonically non-decreasing prop-
erty of function h(X): h(X) = F 2X +Q− F 2C2

nk
X2(C2

nk
X +

Rnk)
−1 + ∆2

6
F 2, which is left to the full journal version.

Lemma 2

(i) Denote w = (n1, · · · , nl) as a walk on the graph (V, E). If we
define the function gw by

gw(X) = fnl ◦ fnl−1 ◦ · · · ◦ fn1(X), (21)

where fn(X) is defined in (12), there exists a constant α > 0 such
that gw(X) ≤ α, ∀X ≥ 0.

(ii) The sequence {P̃ (k)} is stochastically bounded, i.e.,

lim
J→∞

sup
k∈T+

P
(
P̃ (k) > J

)
= 0. (22)

The proof of Lemma 2 is according to the results in Proposi-
tion 1, which is skipped.

With the property of stochastic boundedness of the sequence
{P̃ (k)}, Lemma 6.1 in [16], and Theorem 27 in [7], we can con-
clude that only claim b) in Theorem 27 of [7] holds, i.e., there exists
a unique almost equilibrium uA(w) defined on a θR-invariant 2 set
Ω∗ ∈ FR with P(Ω∗) = 1, such that for any random variable v(w)

possessing the property 0 ≤ v(w) ≤ ηuA(w) for all w ∈ Ω∗ and
deterministic η, the following holds:

lim
k→∞

φ(k, θR−kw, v(θR−kw)) = uA(w), w ∈ Ω∗. (23)

Further incorporating Lemma 17 in [7], we have the following theo-
rem regarding the weak convergence of the sequence

{
P̃ (k)

}
:

Theorem 3 Under the assumption of full network connectivity,
there exists a unique probability measure µA (functional of the
stochastic matrix A), such that for each n ∈ {1, · · · , N}, the

sequence
{
P̃ (k)

}
converges weakly to µA from every initial con-

dition Pn(0):

P̃ (k) ⇒ µA, ∀n ∈ {1, · · · , N}. (24)

After establishing Theorem 3, following the logic in the proof for
Theorem 10 in [7], we now present the key result characterizing the
convergence property of the sequence

{
P̂n
k|k−1

}
.

Theorem 4 Under the assumption of full network connectivity, de-
note n as the index of the sensors (uniformly) randomly selected
from the whole set of sensors {1, · · · , N}. Then the sequence{
P̂n
k|k−1

}
converges weakly to the unique probability measure µA

as in Theorem 3, i.e.,
P̂n
k|k−1 ⇒ µA. (25)

For the optimal algorithm with the error variance sequence{
P̂n
k|k−1

}
in (7) taking the optimal gain Kn∗

k in (9), the con-
vergence or consensus property over the network can be easily
established based on the above analysis over the suboptimal case.
We can define the corresponding functions in the optimal algorithm,
in the same way as fn defined in (12). Then with the interacting
particle representation, we can construct the RDS formulation for

2A set A ∈ F is called θR-invariant if θRA = A for all k ∈ T.
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Fig. 1. (a) Empirical CDFs for the measures µA of QGIKF and non-
quantized GIKF. (b) Histogram of the measure µA in QGIKF and the error
variance distribution of the non-cooperation algorithm.

the corresponding auxiliary sequence. Since we have established the
stochastically bounded nature in the suboptimal case, the stochas-
tically bounded nature of

{
P̂n
k|k−1

}
in the optimal algorithm is

automatically established. Finally, with the properties in the RDS,
we can prove the convergence property for the optimal algorithm.

5. SIMULATION RESULTS

The simulation is based on a network of 5 sensors with an adja-
cency matrix satisfying the connectivity requirement of the network.
The parameters Cn and Rn in the observation model (2) are select-
ed differently for various sensors, such that we could have different
estimation error variances when each sensor running its own local
Kalman filter without cooperation. The quantization step ∆ is set as
1. The QGIKF algorithm runs with 1, 000 recursions to ensure the
convergence. We simulate the optimal estimation error variance of
the QGIKF algorithm with gain Kn∗

k in (9) for 5, 000 times and cal-
culate the corresponding empirical cumulative distribution function
(CDF).

In Fig. 1(a), we show the comparison between the empirical
CDFs for the measure µA in the QGIKF and that in the non-
quantized GIKF of [7]. Since the QGIKF involves more error or
information loss due to the quantization, the performance of the
estimation error variance with QGIKF is worse than that of the non-
quantized GIKF. In Fig. 1(b), we show the performance of QGIKF
versus the non-cooperation scheme, i.e., each sensor runs its own
local Kalman filter and there is no information exchange among the
sensors. The histogram in probability of Fig. 1(b) displays the statis-
tic of the measure µA obtained in the QGIKF (shown in Theorem 4)
and the statistic of the error variance in the non-cooperation scheme,
by uniformly selecting the index of sensors. Compared with the non-
cooperation scheme, the QGIKF demonstrates much more chances
to provide a lower estimation error variance, which validates the
advantage of cooperation even with quantization incorporated in the
inter-sensor communications.

6. CONCLUSION

We introduced the QGIKF scheme with consideration of the limited
bandwidth and power for inter-sensor communications, to estimate
the state sequence of a scalar dynamic system. By formulating the
problem as an RDS, we show that the network can still achieve weak
consensus, even with the information loss due to quantization. Fu-
ture work will focus on how to extend the problem to incorporate
more practical finite-alphabet quantizers and to study the quantized
vector dynamic systems.
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