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ABSTRACT

In distributed tracking, communication bandwidth is one
of the most expensive resources when we require to send mea-
surements to other locations for processing. Furthermore,
bandwidth requirement increases when tracking in clutter is
considered due to transmission of target as well as clutter
measurements. This paper describes the tracking in clutter
under bandwidth constraints. The main idea is that instead of
sending all target and clutter measurements we combine them
into a weighted sum and transmit the resultant measurement.
A novel Bayesian filter is proposed utilising the received mea-
surement information. We observe some loss of performance
as compared to local tracker, however it is considerably small.

Index Terms— Distributed Tracking, Compression, clut-
ter , Communication constraints

1. INTRODUCTION

Target tracking with spatially distributed sensors and with
constraints on communication resources such as bandwidth,
is widely discussed in the literature. In a traditional spatially
distributed sensor network, sensors collect target measure-
ments in the surveillance area and transmit them to the fusion
center where tracking is performed. The fusion center fuses
the received measurements and updates the track of the target
being followed. In presence of clutter, sensor collects tar-
get as well as clutter measurements making communication
more onerous. Under constraint on bandwidth, instead of
sending target and clutter measurements, we combine target
and clutter measurements into weighted sum and transmit this
resultant measurement information.

The primary objective is tracking performance in the
mean square sense, the optimal architecture for tracking tar-
get using spatially distributed sensors is a centralized archi-
tecture, where each node sends its measurements to the fusion
center [1]. However, the centralized architecture comes with
several drawbacks, consisting of high bandwidth require-
ments, high vulnerability to attack, delay in transmission and
reception, information received out of order etc [2].

Distributed or decentralized tracking overcomes some
problems of the centralized architecture. In distributed track-
ing each local sensor has the capability to perform local
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tracking using its own measurement data and sends local
state estimates to the fusion center. Nonetheless problem
becomes complex when received estimates of a target from
various sensors are correlated with each other [3].

Transmitting local estimates in a decentralized architec-
ture requires less bandwidth when compared to a centralized
structure. However, bandwidth requirements can be fur-
ther reduced by transmitting equivalent measurements and/or
equivalent innovations as discussed in [2] and [4]. However
equivalent innovations transmission leads to random walk
phenomenon as discussed in [4] due to accumulation of en-
coding errors at the fusion center. Transmitting equivalent
measurements effectively saves bandwidth and proves to be
a better approach as discussed in [5], [6], [7] and [8]. In a
decentralized architecture, degradations of tracking perfor-
mance have been discussed in [9] and [10]. In a centralized
architecture, problems of bandwidth allocation are discussed
in [11] and [12].

We address tracking of target under communication con-
straints in clutter environment where we need to send all ac-
quired measurements to another location. We combine re-
ceived measurements at local node using weighted sum of
target and clutter measurements. The weights are calculated
based on the likelihood of each measurement. This resultant
compressed measurement contains information of clutter and
target measurements received. We transmit this compressed
measurement to the fusion centre (FC). We propose a novel
Bayesian filter which extracts useful information from com-
pressed measurement at the FC. The proposed filter requires
the computation of intractable integrals which are solved with
help of Monte Carlo simulations.

The major contribution of this work consists of the deriva-
tion of novel Bayesian filter which operates on weighted sum
of target and clutter measurements. By adopting this ap-
proach, we save communication bandwidth and are able to
send target and clutter measurement information to other
end as well. This is a preliminary work to understand track-
ing filter which operates on combined measurement. As we
observe, the loss of tracking performance is almost negligi-
ble for our proposed filter when compared to optimal local
Probabilistic data association filter (PDAF).

The structure of the remainder of this paper is as fol-
lows. Section II, formulates the problem of target tracking
in a decentralized architecture. The novel compression filter

4035978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



is derived in Section III. Moving forward, Section IV outlines
the numerical and simulation results. Finally, conclusions are
drawn in Section V.

2. PROBLEM FORMULATION

We consider distributed tracking where we have local pro-
cessing of measurements to maintain local tracks and also
global track is maintained by receiving measurement infor-
mation from local processing unit. We consider tracking of a
single target moving on straight line in one dimension surveil-
lance space in cluttered environment and following below tra-
jectory model.

xk+1 = Fxk + νk (1)

where k represents sensor scan time, F is the target state tran-
sition matrix, and process noise νk is a zero mean white Gaus-
sian noise sequence with covariance matrix Q. The sensor
measurement model is

zk = Hxk + ωk (2)

where H denotes the measurement matrix and measurement
noise ωk is a zero mean white Gaussian noise sequence with
covariance matrix R uncorrelated with process noise νk. The
target under observation is detectable with probability of de-
tection is one. The clutter is uniformly distributed in surveil-
lance space. Due to clutter in surveillance, we receive Mk

measurements with at least one target measurement at each
scan. The number of clutter measurements per scan follows
poisson distribution with clutter measurement density ρ. We
use classical probabilistic data association filter proposed in
[13] to maintain local track. The set of validated measure-
ments using gating procedure is represented in below equa-
tion.

Zk = {zk,i}mk
i=1 (3)

We need larger bandwidth to transmit above set of measure-
ments to global processing unit and situation becomes more
onerous in case of high dimensions. The idea is to combine
above measurements into one measurement using some scalar
coefficients:

yk =

mk∑
i

αizk,i (4)

where αi are scalars and values are calculated based on like-
lihood of each measurement falling inside gate. We transmit
yk alongwith associated weights αi every scan to the FC.

3. THE COMPRESSED FILTER

In this section, we derive a filter which uses combined mea-
surement yk defined in equation (4) as measurement informa-
tion. We use standard Bayesian procedures to derive this filter

as procedure outlined in [14] and name it the Compressed Fil-
ter (CF).

The conditional density of xk given measurements (in
our case combined measurement) up to time k is denoted as
p(xk|yk) and defined in below equation:

p(xk|yk) ∝ p(yk|xk)p(xk|yk−1) (5)

From equation (4), yk is combination of mk number of
measurements, We assume that each measurement i is target
measurement with p(θk(i)). Now the conditional density can
be written as

p(xk|yk,mk) ∝ p(yk,mk|xk)p(xk|yk−1,mk−1) (6)

The prediction density in above equation is given by Chap-
man Kolmogorove equation as below

p(xk|yk−1,mk−1) =

∫
p(xk|xk−1)p(xk−1|yk−1,mk−1)dxk−1

(7)
The dynamical equation (1) is linear and we assume

Gaussian prior pdf, we can write p(xk|yk−1,mk−1) =
N(xk; x̂k|k−1, Pk|k−1) where

x̂k|k−1 = Fx̂k−1|k−1

Pk|k−1 = FPk−1|k−1F
T +Q

Now, we need to derive likelihood part of Bayesian for-
mula in equation (6). At time k, we receive mk number of
validated measurements and assume only one measurement
being target measurement while rest of them are clutter mea-
surements. We define association events θk(i) in way that
measurement i is target originated measurement with some
probability value of p(θk(i)) where i = 1, 2...,mk. All these
association events are mutually exclusive and exhaustive
events for each time k.

Therefore likelihood function is define as

p(yk|xk) =
mk∑
i=1

p(yk|xk, θk(i))p(θk(i))

p(yk|xk, θk(i)) =
∫
...

∫
p(yk, zk(j)|xk, θk(i))dzj ...dzmk−1

(8)

where j is all from set of mk validated measurements except
ith measurement. The above integral evaluates likelihood of
yk considering ith measurement in equation (4) to be target
originated while considering all other measurements as clut-
ter measurements. According to measurement equation and
considering Gaussian measurement noise assumption, above
equation can be written as

p(yk|xk, θk(i)) =
∫
...

∫
N(yk;αiHxk +

m−k∑
j=1,j 6=i

αjzj , α
2
iR)

dzj ...dzmk−1

(9)
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Now likelihood function can be written by combining
above equations as below

p(yk|xk) =
mk∑
i=0

∫
...

∫
N(yk;αiHxk +

mk∑
j=1,j 6=i

αjzj , α
2
iR)

dzj ...dzmk−1
p(θk(i))

(10)

The Bayesian formula established in equation (6) can be
written below after putting p(yk|xk) and we solve further.

p(xk|yk) ∝
mk∑
i=1

∫
...

∫
N(yk;αiHxk +

mk∑
j=1,j 6=i

αjzj , α
2
iR)

dzj ...dzmk−1
p(θk(i))N(xk; x̂k|k−1, Pk|k−1)

p(xk|yk) ∝
mk∑
i=1

∫
...

∫
N(yk;αiHxk +

mk∑
j=1,j 6=i

αjzj , α
2
iR)

×N(xk; x̂k|k−1, Pk|k−1)p(θk(i))dzj ...dzmk−1

(11)

We can solve product of two Gaussian N(yk;αiHxk +∑mk

j=1,j 6=i αjzj , α
2
iR)N(xk; x̂k|k−1, Pk|k−1) in above equa-

tions using Gaussian product formula given in [14]

N(yk; ŷk +

mk∑
j=1,j 6=i

αjzj , Ŝk)N(xk; x̂k|k, Pk|k)

The parameters of the above Gaussians are calculated using
following equations:

ŷk = αiHx̂k|k−1

Ŝk = α2
i (HPk|k−1H

′ +R)

x̂k|k = x̂k|k−1 +K(yk − αiHx̂k|k −
mk∑

j=1,j 6=i

αjzj)

Pk|k = Pk|k−1 − αiKHPk|k−1

Where K = αiPk|k−1H
′Ŝk
−1

is the gain of the filter.
The posterior probability density function can be written

as

p(xk|yk) ∝
mk∑
i=1

∫
...

∫
N(yk; ŷk +

mk∑
j=1,j 6=i

αjzj , Ŝk)

×N(xk; x̂k|k, Pk|k)p(θk(i))dzj ...dzmk−1

(12)

3.1. Compressed Filter Algorithm

Finding the closed form solution of equation (12) is in-
tractable. However, in literature there exist techniques to
solve complex integrals using either numerically or Monte

Carlo simulations. We adopt Monte Carlo simulation method
to solve equation (12). By adopting Monte Carlo simulation
procedure to find approximate solution of equation (12), we
require simulating mk−1 variables for each i. Although, this
procedure works however when mk−1 becomes bigger, the
growing computations makes this procedure less attractive.
We propose another simple approach to handle this computa-
tion problem. The summation term

∑mk

j=1,j 6=i αjzj is sum of
mk−1 clutter measurements. From the distribution of clutter,
we know that clutter is uniformly distributed in surveillance.
This summation term is actually sum of uniformly but non-
identically distributed random variable. The distribution of
sum of n uniformly distributed random variables over inter-
vals [ai, bi] can be found in [15].

Sn =

n∑
j=1

αjzj =

n∑
j=1

Xj (13)

Equation (12) can be re-written by replacing
∑mk

j=1,j 6=i αjzj
with another random variable Sn defined above. Now resul-
tant equation contains one integral and can be easily solved
in Monte Carlo integration framework.

p(xk|yk) ∝
mk∑
i=1

∫
N(yk; ŷk + Sn, Ŝk)p(Sn)

×N(xk; x̂k|k, Pk|k)p(θk(i))dSn

(14)

The parameters of N(yk; ŷk + Sn, Ŝk)N(xk; x̂k|k, Pk|k) are
given in below set of equations:

ŷk = αiHx̂k|k−1

Ŝk = α2
i (HPk|k−1H

′ +R)

x̂k|k = x̂k|k−1 +K(yk − αiHx̂k|k − Sn)

Pk|k = Pk|k−1 − αiKHPk|k−1

Where K is the gain of the filter similar as defined earlier.
The simulation of algorithm is based on mixture of Gaus-

sian propagating and updating. We initialize with nG number
of Gaussian and its weight and predict each Gaussian using
standard prediction as described in Equation (3). To update
each predicted Gaussian and its associated weight, we need
to implement Equation (14). The integral in Equation (14) is
solved by simulating Sn as defined in Equation (13). Each
predicted Gaussian is updated with every sample of Sn and
for all data association hypothesis and we update weight of
each resultant Gaussian. The number of Gaussians in this
mixture grows exponentially with time, however we maintain
a high weighted Gaussians and discard low weighted Gaus-
sians in mixture. The summary of implementation is given in
Algorithm 1.

4. SIMULATION RESULTS

Each experiment discussed in this section assumes an identi-
cal simulation environment. One target is moving in a straight
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Algorithm 1 The Compressed Filter one Iteration
1: Initialize← [wl

k−1|k−1, N(x; x̂lk−1|k−1, P
l
k−1|k−1)]

nG
l=1

2: Recursion Starts
3: for l← 1, nG do
4: Prediction← N(x; x̂lk|k−1, P

l
k|k−1)

5: for i← 1,mk do
6: Draw nS Samples of Sn as in (13)
7: for j ← 1, nS do
8: Update← N(x; x̂l,i,jk|k (Sn(j)), P

l,j,i
k|k )

9: wl,i,j
k|k = wl

k−1|k−1N(yk;αiHx̂
l
k|k−1 +

Sn(j), α
2
iS

l
k|k−1)

10: end for
11: end for
12: end for
13: Discard Gaussians with low weights
14: Weighted Sum← x̂k|k =

∑G
i=1 w

G
k|kx̂

G
k|k

15: Recursion Ends
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Fig. 1. The simulations comparison of RMSE of local PDAF
filter and proposed global Compressed filter with very high
clutter measurement density of ρ = 0.1.

line in a one dimensional surveillance space. The target is
moving with uniform velocity of 2m/s parallel to the Carte-
sian x axis. This surveillance space is observed with one sen-
sor with scan interval of T = 1s. Sensor measurement noise
is assumed to be Gaussian, white and independent of process
noise, with covariance matrix R = 4. The clutter measure-
ment is 0.1/scan/m2. A local filter used is classical proba-
bilistic data association filter (PDAF) [13]. The sensor node
is connected to the fusion center via a digital communica-
tion channel with assumption that the network is ideal with no
transmission errors and no out of sequence records. The mea-
surements falling inside PDAF gate are combined into one

measurement and weights are calculated based on likelihood
of each measurement. The resultant measurement along with
associated scaling factors is sent to global processing facility.
The proposed Compressed Filter utilizes received information
to track the target in surveillance space. Figure 1, shows the
root mean square error comparison of local PDA filter and our
proposed compressed filter. The time averaged RMSE values
for local PDA and our proposed CF are 1.6044 and 1.7236
respectively. Based on this statistics, we can say that tracking
performance of our proposed filter is slightly decreased while
just sending one combined measurement.

5. CONCLUSION

In this paper, we proposed a scheme for measurement in-
formation transmission in a distributed tracking architecture.
This scheme proved to be helpful in transmitting information
with low data rates. We combined received measurements at
local node into single measurement with associated weights,
calculated based on likelihood of each measurement. The
resultant combined measurement is transmitted to global pro-
cessing unit. We proposed Bayesian recursive filter which
operate on combined measurement. We implemented Monte
carol simulation based method to update predicted condi-
tional densities. The implementation is based on Gaussian
mixture with associated weights. To limit the number of
Gaussians in mixture, we keep high weighted Gaussians and
discard negligible weighted Gaussians. The simulation re-
sults show that tracking performance is reduced a bit but
we can still track the object without being lost. Our pro-
posed approach requires lower communication bandwidth
and maintains the track and its quality. This is preliminary
work and need extension to study practical tracking limita-
tions such as missing measurements, probability of detection
is less than 1 and high dimension cases.
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