
Sensor Selection with Correlated Measurements for Target Tracking in Wireless Sensor Networks

Sijia Liu∗, Engin Masazade†, Makan Fardad∗ and Pramod K. Varshney∗
∗Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, USA

Email: {sliu17, makan, varshney}@syr.edu
†Department of Electrical and Electronics Engineering, Yeditepe University, Istanbul, Turkey

Email: engin.masazade@yeditepe.edu.tr

Abstract—We study the problem of adaptive sensor management for
target tracking, where at every instant we search for the best sensors
to be activated at the next time step. In our problem formulation, the
measurements may be corrupted by correlated noises, and the impact
of correlated measurements on sensor selection is studied. Specifically,
we adopt an alternative conditional posterior Cramér-Rao lower bound
(C-PCRLB) as the optimization criterion for sensor selection, where
the trace of the conditional Fisher information matrix is maximized
subject to an energy constraint. We demonstrate that the proposed sensor
selection problem can be transformed into the problem of maximizing a
convex quadratic function over a bounded polyhedron. This optimization
problem is NP-hard in nature, and thus we employ a linearization method
and a bilinear programming approach to obtain locally optimal sensor
schedules in a computationally efficient manner.

Index Terms—Target tracking, sensor selection, convex optimization,
wireless sensor networks.

I. INTRODUCTION

In target tracking using a wireless sensor network, sensors observe
an unknown state and report noisy measurements to a fusion center
which determines an estimate of the target state. However, due to
resource constraints such as communication bandwidth and sensor
battery life, it is desirable that only a subset of sensors be activated
over time and space [1]. Thus, the issue of sensor selection/scheduling
arises.

Several variations of sensor selection/scheduling problems have
been studied in the literature [2]–[8] according to the type of quantity
to be estimated (parameter or random process), measurement models
(linear or nonlinear) and cost functions (estimation performance or
energy consumption). In the aforementioned literature, a posterior
Craḿer-Rao lower bound (PCRLB) is commonly used as the op-
timization criterion for sensor selection in target tracking [2], [3].
However, the PCRLB is not suitable for adaptive sensor management
since it is an offline bound, which can be determined by the dynamic
model, measurement model and prior knowledge of the system
state at the initial time [9]. Therefore, we adopt an alternative
conditional PCRLB (C-PCRLB) as the performance metric for sensor
selection, where the considered C-PCRLB is an online bound which
incorporates the effect of actual sensor measurements [10].

In [2]–[8], the sensor selection problem was studied by assuming
the measurement noise to be uncorrelated, which implies that each
measurement contributes to the Fisher information in an additive
manner. By exploiting this structure, sensor selection problems with
uncorrelated measurements can be efficiently solved via convex
relaxations. Here, we consider a more general scenario in which the
measurement noises are correlated, and for example, the correlated
measurements occur in a spatially-correlated sensor field [11].

The sensor selection problem with correlated measurements has
been recently studied in [12], [13] for parameter estimation and
state tracking, respectively. In [12], the problem was formulated by
minimizing the number of selected sensors subject to an estimation
quality. In [13], the problem was solved by maximizing the trace
of Fisher information under an energy constraint. The proposed
sensor selection problems in [12], [13] are nonconvex due to the
Boolean selection variables as well as the impact of correlated noises.

Thus, locally optimal solutions were obtained by using semidefinite
programs (SDPs). Compared with the existing literature [12], [13],
our contributions are listed as follows.

• We propose an adaptive sensor selection framework, in which
an alternative conditional PCRLB is used as the optimization
criterion.

• We demonstrate that the problem of sensor selection with
correlated measurements (in terms of maximizing the trace of in-
formation matrix under an energy constraint) can be transformed
into the problem of maximizing a convex quadratic function over
a bounded polyhedron.

• We show that locally optimal solutions of the proposed sensor
selection problem can be efficiently found by solving linear
programs rather than SDPs.

II. SYSTEM MODEL

Consider a discrete-time dynamical system

xt+1 = Fxt + ut (1)
yt = h(xt) + vt, (2)

where xt ∈ Rn is the target state at time t, yt ∈ Rm is
the measurement vector whose ith entry corresponds to a scalar
observation from the ith sensor, F is the state transition matrix, and
h(·) denotes a nonlinear measurement model. The inputs ut and
vt are white, Gaussian, zero-mean random vectors with covariance
matrices Q and R, respectively. We remark that the covariance matrix
R may not be a diagonal matrix, since the noise experienced by
different sensors could be correlated.

Without loss of generality, we assume that the target state is a 4×1
dimensional vector xt = [xt,1, xt,2, xt,3, xt,4]T , where (xt,1, xt,2)
and (xt,3, xt,4) denote the target location and velocity in the 2-D
plane, respectively. The state equation (1) is assumed to follow a
white noise acceleration model [6], where

F =


1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1

 , Q = q
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0
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∆2
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0 ∆ 0

0 ∆2

2
0 ∆

 .
(3)

In (3), ∆ and q denote the sampling interval and the process noise
parameter, respectively.

The measurement equation (2) is given by a power attenuation
model [14], where for the mth sensor at time t, the nonlinear
measurement function follows

hi(xt) =

√
P0

1 + d2
t,i

, i = 1, 2, . . . ,m. (4)

In (4), P0 is the signal power of the target, dt,i =√
(xt,1 − αi)2 + (xt,2 − βi)2, (xt,1, xt,2) is the target location at

time t, (αi, βi) is the position of the ith sensor, and h(xt) =
[h1(xt), h2(xt), . . . , hm(xt)]

T .
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In this paper, we employ a sampling importance resampling filter
[15, Algorithm 1] to track the target for a nonlinear dynamical system
(1)-(2). The SIR filter is a particle filter, which refers to a sequential
Monte Carlo method of using point mass (also referred to as particle)
representations to approximate the probability densities in estimation.
The particle filter has been widely used in problems of nonlinear
filtering; see more applications in [16]. Considering the issue of
sensor selection, at every time step we require the search for the best
sensors to be activated at the next time step. The sensor selection
problem will be elaborated on in the following sections.

III. PROBLEM FORMULATION

Recently, a conditional posterior Craḿer-Rao lower bound (C-
PCRLB) has been proposed in [9] by incorporating the history of ac-
tual sensor measurements. Compared with the conventional PCRLB,
the C-PCRLB provides a tighter error bound on mean squared
error (MSE). Nevertheless, obtaining C-PCRLB is computationally
intensive due to the presence of the auxiliary Fisher information
matrix; see [9, Thm. 1]. To reduce the complexity, reference [10]
introduced an alternative C-PCRLB, which yields an estimate of the
exact C-PCRLB. In this paper, we adopt the alternative C-PCRLB as
the performance criterion for sensor selection.

A. Alternative conditional posterior Craḿer-Rao lower bound

Let x0:t and y1:t denote the state vector and measurements up
to time t. Then the MSE of the estimate x̂0:t (conditioned on
the measurements y1:t−1) is lower bounded by the inverse of the
conditional Fisher information matrix [9]

E{[x̂0:t − x0:t][x̂0:t − x0:t]
T |y1:t−1} ≥ J−1(x0:t|y1:t−1).

Let J(xt|x1:t−1) denote the matrix whose inverse equals the lower-
right corner submatrix of J−1(x0:t|y1:t−1). Then the inversion of
J(xt|y1:t−1) provides a lower bound on the MSE of estimating xt.

For the linear Gaussian model (1), J(xt|y1:t−1) can be computed
as follows [10, Corollary 1],

Jt =
(
Q + FJ−1

t−1F
T
)−1

+ Φt (5)

Φt := Epct
{−∆xt

xt
lnp(yt|xt)} , (6)

where for simplicity we have used, and henceforth will continue to
use Jt instead of J(xt|y1:t−1), pct := p(xt,yt|y1:t−1), and ∆x

x

denotes the second-order partial derivative with respect to x. Due to
the assumption of Gaussian noise, the observation likelihood p(yt|xt)
in (6) is given by

p(yt|xt) =
(2π)−2

det(R)1/2
e−

1
2

[yt−h(xt)]TR−1[yt−h(xt)], (7)

Using the fact that yt, xt and y1:t−1 form a Markov chain, we
have pct = p(xt|y1:t−1)p(yt|xt). Substituting (7) into (6), we obtain

Φt =Ep̂t

[
(∇xth

T )R−1(∇xth
T )T

]
, p̂t := p(xt|y1:t−1), (8)

where we replace h(xt) with h for simplicity.
It is clear from (8) that the alternative conditional PCRLB incor-

porates the history of sensor measurements y1:t−1 and thus is an
online bound. This is in contrast with the conventional PCRLB (see
[16, Eqs. 34-36]), which involves a similar form as (8) except for the
incorporation of y1:t−1.

B. Sensor selection problem
We introduce a vector of binary variables

w = [w1, w2, . . . , wm]T , wi ∈ {0, 1}

to characterize the sensor schedule during one snapshot. Suppose, for
example, that at time t only the jth sensor reports a measurement.
In this case, it follows from (4) that wiht,i = 0 for all i 6= j.

By incorporating the selection variables w, Fisher information (5)
can be rewritten as [12]

Jt =
(
Q + FJ−1

t−1F
T
)−1

+ Ψt (9)

Ψt := Ep̂t [(∇xth
T )DwR−1Dw(∇xth

T )T ]

= Ep̂t [(∇xth
T )(wwT ◦R−1)(∇xth

T )T ], (10)

where Dw denotes the diagonal matrix diag(w), and ◦ represents
the Hadamard (elementwise) product.

Remark 1: If R is a diagonal matrix, then Ψt reduces to a linear
matrix function with respect to the selection variables, i.e.,

Ψt =

m∑
i=1

wi

Rii
Ep̂t

[
(∇xthi)(∇xthi)

T
]
, (11)

where we use the fact that w2
i = wi for i = 1, 2, . . . ,m. This implies

that sensor measurements contribute in an additive manner for the
information matrix. Such a structure has been explored in [4], [7]
when the measurement noises are uncorrelated.

To find the optimal sensor selection scheme w, various scalar
functions of the Fisher information matrix can be used as performance
metrics; examples include tr(J−1

t ) [3], det(Jt) [4] and tr(Jt) [13],
[17]. Compared to the sensor selection problem with uncorrelated
measurements [3], [4], the derivation of det(Jt) and tr(J−1

t ) with
correlated noise becomes much more involved due to the presence of
off-diagonal entries of R. For simplicity of computation, we consider
the maximization of tr(Jt), which can be further transformed into a
convex quadratic function with respect to w.

Now, we pose the sensor selection problem by maximizing tr(Jt)

maximize
w

tr(Ψ)

subject to 1Tw ≤ s,
wi ∈ {0, 1}, i = 1, 2, . . . ,m.

(12a)

(12b)

where we replace Ψt with Ψ for simplicity, the term tr[(Q +
FJ−1

t−1F
T )−1] in tr(Jt) is omitted since it is given a priori at time

t, and s denotes the maximum number of sensors to be activated.
In what follows, we will refer to inequality (12b) as the energy
constraint.

IV. SENSOR SELECTION WITH CORRELATED MEASUREMENTS

In this section, we show that the proposed sensor selection problem
(12) can be transformed into the maximization of a convex quadratic
function over a bounded polyhedron.

From (10), we can rewrite (12a) as

tr(Ψ) = wTΩw, (13)

where the (i, j)th entry of Ω is given by

Ωij = Ep̂t [(∇xthi)
T (R)ij(∇xthj)], (14)

and (R)ij is the (i, j)th entry of R. In (13), we can further show that
the matrix Ω is positive semidefinite (noted by Ω � 0) since Ω can
be rewritten as Ω = Ep̂t [A(xt)(R

−1⊗I)A(xt)
T ], where A(xt) =

blkdiag[( ∂h1(xt)
∂xt

)T , ( ∂h2(xt)
∂xt

)T , . . . , ( ∂hm(xt)
∂xt

)T ]∈Rm×mn.1 There-

1The notation blkdiag[A1, . . . ,Am] signifies a block-diagonal matrix
whose diagonal entries are the matrices A1, . . . ,Am.
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fore, the objective function in (12) is a convex quadratic function.
We omit details of the derivations for the sake of brevity.

Problem (12) can therefore be written as

maximize
w

wTΩw

subject to 1Tw ≤ s, wi ∈ {0, 1}, i = 1, 2, . . . ,m,
(15)

where we elaborate on the computation of Ω � 0, using particle
representations, in Appendix A.

Remark 2: For the special case in which measurement noises are
uncorrelated (i.e., R is a diagonal matrix) [4], we have Ωij = 0 for
i 6= j from (14). Then, problem (15) becomes

maximize
w

∑m
i=1 wiΩii

subject to 1Tw ≤ s, wi ∈ {0, 1}, i = 1, 2, . . . ,m,
(16)

where we use the fact that w2
i = wi for i = 1, 2, . . . ,m. In (16), the

optimal sensor selection scheme is given by choosing the s sensors
which yield the first s largest values of {Ωii}i=1,2,...,m. This result
is consistent with [4], [13, Theorem 3].

A standard method of solving (15) is to replace the binary variable
wt,i with a continuous variable wi ∈ [0, 1]. This leads to a relaxed
problem

maximize
w

wTΩw

subject to 1Tw ≤ s, 0 ≤ w ≤ 1,
(17)

which generally provides an upper bound on the optimal value of
(15). However, in the scenario of Ω � 0, Proposition 1 demonstrates
that problem (17) is equivalent to problem (15).

Proposition 1: Problems (15) and (17) are equivalent.
Proof: The idea of the proof lies in the fact that an optimal solution
to problem (17) occurs at a vertex of the associated polyhedron [18].
For the sake of brevity, details of the proof are omitted here. �

Note that problem (17) is not a convex optimization problem, and
it has been shown in [18] that finding a globally optimal solution
to the problem of maximizing a convex quadratic function over a
bounded polyhedron is NP-hard. Therefore, it is a nontrivial exercise
to solve problem (17).

V. OPTIMIZATION METHODS

Typically, there exist two types of optimization approaches for
solving problem (17): Global optimization methods (e.g., cutting
plane [19] and branch and bound [20]) and local optimization
methods (e.g., linearization [21] and bilinear programming [18]). The
former yield an ε-globally optimal solution but are often slow, while
the latter are fast but result in a locally optimal solution. To achieve
real-time target tracking, it is desirable to solve problem (17) in a
time-efficient manner. Thus, we employ local optimization methods
to obtain the locally optimal solutions.

For convenience, we rewrite problem (17) as the minimization of
a concave quadratic function

minimize
w

−wTΩw

subject to 1Tw ≤ s, 0 ≤ w ≤ 1.
(18)

A. Linearization method

An iterative linearization method is introduced in [22], [23] to solve
the nonconvex quadratic program (QP) by linearizing the nonconvex
parts of quadratic functions. Thus in (18), we replace the concave
objective function with its first-order Taylor expansion around a
feasible point w̄, namely, −2wTΩw̄ + w̄TΩw̄T . This linearized
function provides an affine upper bound of the concave objective

function in (18). A locally optimal solution of problem (18) is then
obtained by solving the linear program (LP)

minimize
w

−2wTΩw̄ + w̄TΩw̄

subject to 1Tw ≤ s, 0 ≤ w ≤ 1.
(19)

The linearizing method (also called convex-concave procedure [23])
is summarized in Algorithm 1.

Algorithm 1 Linearization method for solving (18)

Require: Given an initial feasible point w0 and ε.
1: for k = 1, 2, . . . , do
2: set w̄ = wk−1, and solve (19) for the solution wk.
3: terminate if |wT

k Ωwk −wT
k−1Ωwk−1| ≤ ε.

4: end for

We remark that the solution obtained from Algorithm 1 may not
be a good approximation for the optimal solution of (18) due to
the choice of the initial linearizing point w0. Reference [24, Sec. 2]
has suggested an approach for selecting a good initial point such
that the error bound between the objective value of (18) and that
of (19) is minimized. However, this procedure requires solving 2m
linear programs to obtain the lower and upper bound on uT

i w for
i = 1, 2, . . . ,m, where {ui}i=1,2,...,m denote the eigenvectors of
−Ω. For ease of computation, here we set the initial value of w0 as
a vector of containing s random numbers (drawn from the standard
uniform distribution) and 0s elsewhere.

B. Bilinear programming approach

According to [18, Theorem 2.2], we obtain that problem (18) is
equivalent to an associated bilinear program2

minimize
w,z

−wTΩz

subject to w ∈ P, z ∈ P,
(20)

where P = {x|1Tx ≤ s,0 ≤ x ≤ 1}, and if (w∗, z∗) is optimal
for (20), then both w∗ and z∗ are optimal for (18).

To solve problem (20), we employ an alternative optimization
method (also known as the mountain climbing algorithm [18], [25])
to seek a locally optimal solution of (20) as demonstrated in Al-
gorithm 1. To initialize Algorithm 1, we use the same strategy of
generating the starting point in Sec. V-A. At each iteration, we solve
two LPs in Steps 2-3 of Algorithm 1.

Algorithm 2 Alternative optimization method for solving (20)

Require: given a feasible vector z0 ∈ P and ε.
1: for k = 1, 2, . . . , do
2: solve LP: wk = arg min

w∈P
{ψ(w, zk−1)}.

3: solve LP: zk = arg min
z∈P

{ψ(wk, z)}.

4: terminate if |wT
k Ωzk −wT

k Ωzk−1| ≤ ε.
5: end for

VI. NUMERICAL RESULTS

In our simulations, we assume that m = 30 sensors are
deployed in a 10 × 10 m2 area. In state model (3), we set
∆ = 1 and q = 0.1. The initial state distribution of the tar-
get is assumed to be Gaussian with mean µ0 = [0, 0, 0.8, 0.8]
and covariance Σ0 = diag[1, 1, 0.01, 0.01]. In measurement

2A bilinear program refers to the problem which involves a bilinear
objective function ψ(w, z) = aTw+ bT z+wTPz and linear constraints.
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model (2), we set P0 = 104, and the noise covariance ma-
trix R is given by an exponential model [11] cov(vt,i, vt,j) =
σ2
vexp{−ρ

√
(αi − αj)2 + (βi − βj)2}, where σ2

v = 1, ρ = 0.025
corresponds to a strong correlation, and (αi, βi) denotes the position
of the ith sensor. In Algorithm 1, we choose ε = 10−3. To evaluate
the tracking performance, we perform 100 simulation trials, during
each of which we use K = 5000 particles in the particle filter.
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Fig. 1: MSE and number of selected sensors versus time steps.

In Fig. 1, we present the MSE and the number of selected sensors
as functions of time steps, where the energy budget is set by s = m =
20. For comparison, we also show the MSE when all of sensors are
activated in target tracking. We observe that the bilinear programming
approach outperforms the linearization method, since the optimization
performance of the latter might be (negatively) affected by the choice
of the linearizing point. Although the number of selected sensors
obtained from the bilinear programming approach is less than s, the
corresponding MSE is close to the estimation performance of using
all s = 20 sensors. This is because the presence of correlation among
sensors leads to information redundancy, which causes less diversity
in received measurements. As a result, the estimation performance
ceases to significantly improve when a very large number of sensors
are activated.
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Fig. 2: MSE as a function of m (i.e., the bound on energy constraint).

In Fig. 2, we present the MSE by varying the energy budget of s,
where the MSE is averaged over 10 time steps. As we can see, the
estimation performance ceases to significantly improve when m >

15. This result is consistent with our analysis in Fig. 1. For m = 11,
we show the resulting sensor schedules for two time steps in Fig. 3.
Note that the sensors closest to the target are selected due to their high
received signal power. And the selected sensors tends to be spatially
distributed rather than aggregating in a small neighborhood around
the target, since observations from neighboring sensors are strongly
correlated and lead to information redundancy.
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Fig. 3: Sensor schedules for two time steps with s = 11: (a) t = 3, (b)
t = 6.

VII. CONCLUSION

In this paper, the sensor selection problem for target tracking
with correlated measurements was studied. Using the trace of the
conditional Fisher information matrix as an objective to be maximized
subject to energy constraints, it was shown that the sensor selection
problem can be interpreted as the maximization of a convex quadratic
function over a bounded polyhedron. This optimization problem is
nonconvex in nature, and we applied a linearization method and
bilinear programming approach to find locally optimal solutions. Our
proposed solution algorithms are based on linear programming and
therefore scale gracefully with problem size. Numerical results show
that correlated measurements bring in information redundancy, which
has a large impact on sensor selection. In this paper, the problem of
sensor selection was only considered for scheduling sensors at the
next time step. Our future work will study the problem of non-myopic
scheduling, where sensor schedules are determined for multiple future
time steps. Also, we will study other scalar measures of Fisher
information for sensor selection with correlated measurements.

APPENDIX A
PARTICLE REPRESENTATION OF Ω

In particle filters, the posterior probability density p̂t is given by
p̂t = p(xt|y1:t−1) ≈

∑K
k=1

1
K
δ(xt−x

(k)
t ), where K is the number

of particles, δ(·) is the δ-function, and x
(k)
t denotes the kth particle

at time t. Substituting (4) and the particle representation of p̂t into
(14), we obtain

Ωij =
R̄ijP0

K

K∑
p=1

(αi − x(k)
t,1 )(αj − x(k)

t,1 ) + (βi − x(k)
t,2 )(βj − x(k)

t,2 ){[
1 + (d

(k)
i,t )2

] [
1 + (d

(k)
j,t )2

]} 3
2

,

(21)

where (x
(k)
t,1 , x

(k)
t,2 ) denotes the target position given by the kth

particle, d(k)
i,t =

√
(αi − x(k)

t,1 )2 + (βi − x(k)
t,2 )2. The complexity of

computing Ω is approximately O(m2K), since for each entry of
Ω ∈ Rm×m, there exist K additive terms in (21).
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