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ABSTRACT

This paper presents an analysis on optimal mobile sensor con-
figuration for multiple-target-tracking (MTT) with Received-
Signal-Strength-Indicator (RSSI) based measurements. The
analysis is based on the underlying assumption that the com-
plexity of this inherently high-dimensional problem is re-
duced by employing a multi-agent distributed tracking sys-
tem. The assumed system assigns a single target of interest
(TOI) to each agent and treats the remaining targets as in-
terference sources. The measurement interference due to
these sources is effectively compensated for by exchanging
TOI information between agents, and fusing this informa-
tion during the estimation process. Proper sensor placement
within such an environment represents a unique challenge and
optimal solutions are fundamentally different from a conven-
tional MTT scenario. The main results of this paper include
formulation and subsequent simplification of the optimality
criterion along with a suboptimal solution yielding competi-
tive performance and superior efficiency. Simulation results
are presented demonstrating the performance of the proposed
solution and comparisons are made to existing techniques.

Index Terms— RSSI-based target tracking, multiple tar-
get tracking, mobile sensors, sensor positioning

1. INTRODUCTION

With recent advances in technology, the concept of a network
of mobile autonomous units (agents), each fitted with special-
ized sensing devices, cooperatively acting to track and follow
some target, has become a physically achievable reality [1].
There are numerous benefits of employment of a mobilized
suite of sensors to track a target. The most important of them
is the fact that the sensors can be positioned so as to extract
the maximum possible information at each time instant re-
garding the target state. Determination of an optimal trajec-
tory for the sensors can be an ambiguous task. In general, it
will depend on the used optimality criteria, the actual target
track estimation methodology, and the specific characteristics
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of the underlying target environment. A wide variety of so-
lutions have been developed to handle sensor management,
many with the common theme of “information-driven” mo-
bility as in [2, 3, 4, 5], whereby the sensor motion is carried
out with the specific intent of optimizing the projected quality
of measurements or the “information gain,” at the new sensor
locations. Others place an emphasis on a more balanced ap-
proach, paying specific attention to energy efficiency [6] or
sensor coverage [7].

The current literature is relatively sparse in considering
sensor positioning for an MTT environment. The work in
[8] is a notable exception and provides a thorough investiga-
tion of the problem for a scenario involving sensors that pro-
vide range-only measurements corrupted by Gaussian noise.
There, closed-form expressions are found for optimal sensor
configurations with an arbitrary number of sensors or targets.
While [8] can possibly be applied to RSSI sensor systems, it
cannot be done so directly. In that case, one must first produce
range estimates for each sensor-target pair from the measure-
ments and act as if these estimates are themselves measure-
ments adequately modeled as corrupted by Gaussian noise.

There is a fundamental difference between that work and
what we present here. In this paper, sensor positioning is
considered as a joint task with estimation. To be more pre-
cise, the optimality criterion for sensor positioning is based
directly on the RSSI measurements. This is a significantly
more challenging task as each measurement is affected by all
the present targets. We believe that this approach has a signifi-
cant benefit over that of [8] since the effect of sensor positions
on performance is more accurately represented.

While the initial approach and model basis taken here for
sensor trajectory-planning are based on [9], our approach dif-
ferentiates considerably due to the presence of interference
sources. Our main motivation in handling interference lies
in the desire to develop a feasible divide-and-conquer based
method for MTT that is clarified in the next section.

It is our aim in this paper to address the investigation of
optimal sensor positioning for a single TOI, based directly
on RSSI measurements, and with the presence of an arbitrary
number of interfering sources. The main contributions of the
paper include the derivation of a structured form for the posi-
tioning objective function and the sub-optimal solutions that

4025978-1-4673-6997-8/15/$31.00 ©2015 IEEE ICASSP 2015



perform reasonably well and are considered of high value due
to their superior computational simplicity.

2. PROBLEM FORMULATION

The basis of the tracking environment under consideration
was first introduced in [10]. There, a simple case involving
a given agent estimating a single TOI with a single source
of interference was considered. A complete MTT scenario
can be realized by considering multiple interference sources1

as will be done here. Each agent estimates its own TOI and
broadcasts Gaussian parameters regarding its estimate. This
information is then used by other agents to compensate for
measurement interference when estimating their own TOI.

Let us proceed by assuming that for a given agent, there
exists a single TOI moving in a 2D plane whose location is
described by the vector, xt = [xt,1, xt,2]

> at time t. Note
that for the remainder of the paper we drop the t subscript,
all quantities are assumed to be dynamically varying over
time. Furthermore, assume there exists a total of L interfering
sources, with the location of the lth interferer described by the
vector ql = [ql,1, ql,2]

>, at time t. The true location of each
interferer is unknown, but it is assumed to be described prob-
abilistically by the agent in charge of the interferer. Namely,
we assume ql ∼ N

(
q̂l, σ

2
l I2

)
,2 where N (q̂,C) denotes a

bivariate Gaussian random variable with mean q̂ and covari-
ance matrix C, and where I2 is the 2× 2 identity matrix. An
agent tracks its TOI using a total of K mobile sensors. The
measurement of the kth sensor, yk, is given by

yk = y
(x)
k +

L∑
l=1

y
(ql)
k + vk

=

(
Φ

‖sk − x‖α + ε

)
+

L∑
l=1

(
Φ

‖sk − ql‖α + ε

)
+ vk, (1)

where Φ represents the transmitted power, sk = [sk,1, sk,2]
>

is the position vector of the kth sensor, α is the path-loss co-
efficient, ε is a saturation parameter, y(x)

k and y(ql)
k are the

respective measurement contributions from the TOI and inter-
fering target, respectively, and vk represents the uncorrelated
sensor noise. Based on the results in [10], we can approxi-
mate the measurement likelihood as,

f
(
y1:K | x, s1:K , q̂1:L, σ

2
1:L

)
≈

K∏
k=1

N

(
yk | y(x)

k +

L∑
l=1

y
(ql)
k , σ2

k (sk)

)
, (2)

where

σ2
k (sk) = σ2

v +

L∑
l=1

(
Φασl‖sk − q̂l‖α−1

(‖sk − q̂l‖α + ε)
2

)2

. (3)

1Each interferer is the TOI of some other agent.
2One can easily extend this derivation to a general covariance matrix.

We point out the explicit dependence of the likelihood and
individual variance terms (σ2

k) on all the sensor locations. In
fact, σ2

k also depends on the external information (q̂1:L, σ
2
1:L)

as well, but this is left implicit here.
We use as optimality objective the maximization of the

determinant of the Fisher information matrix (FIM).3 This
is termed D-optimality in the literature in contrast to A-
optimality, which uses the minimum trace of the inverse of
the FIM. Defining r as the 2 × 1 vector of partial derivatives
of the log-likelihood w.r.t. x, i.e.,

r =
∂ log f

(
y1:K | x, s1:K , q̂1:L, σ

2
1:L

)
∂x

, (4)

we express the optimization problem as

s1:K = argmax
s1:K

{
det
(
E
[
rr>

])
, O

}
subject to ‖sk − x‖ ≥ ρ ∀ k. (5)

Note that the constraint indicates that each sensor must main-
tain a minimum separation of ρ from the target location. Also
note that the symbol E denotes expectation over the K mea-
surements. It can easily be shown that

ri =

K∑
k=1

1

σ2
k (sk)

(
yk − y(x)

k −
L∑
l=1

y
(ql)
k

)(
∂y

(x)
k

∂xi

)
. (6)

The derivative term is evaluated using (1) and is given by(
∂y

(x)
k

∂xi

)
=

Φα (sk,i − xi) ‖sk − x‖α−2

(‖sk − x‖α + ε)
2 . (7)

By making the following definitions:

ck =
Φ2α2‖sk − x‖2(α−2)

σ2
k (sk) (‖sk − x‖α + ε)

4 , (8)

dk,i = (sk,i − xi) , (9)

one can show that

det
(
E
[
rr>

])
=

1

2

K∑
k=1

K∑
p=1

ckcp‖dk ⊗ dp‖2, (10)

where the symbol ⊗ denotes the outer product between two
vectors.

It is fairly easy to prove that the optimal sensor deploy-
ment without interference consists of the sensors uniformly
distributed around a circle of radius ρ centered at x (subse-
quently referred to as the “ρ-circle”). Although not proven
explicitly here, we assume that the optimal solution satisfies
‖s?k − x‖ = ρ. Therefore, for the remainder of the paper we
consider for the kth sensor,

sk = x + ρ
[
cos (θk) sin (θk)

]>
. (11)

3Interferers are regarded as nuisance parameters for the FIM.
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The complexity of the problem grows remarkably by the
addition of interference.4 The σ2

k (sk) term in the denomi-
nator of ck renders the combined form of (10) intractable to
a closed-form solution. Additionally, it can be seen that the
interference creates “competing constraints” in the objective.
The minimization of the sk terms can push the ‖dk ⊗ dp‖2
terms away from their optimal values. At this point, one could
proceed by using a numerical technique such as Genetic Al-
gorithm [11] or Particle Swarm Optimization [12] to approach
the problem. However, it is highly desirable to formulate a so-
lution that is as computationally inexpensive as possible since
sensor positioning is a real time task. As such, we formulate
a fast approach that achieves positioning close to the optimal
one. The solution is based on a divide-and-conquer approach.

3. PROPOSED SOLUTION

It is clear that the ck terms in (10) represent a dominating fac-
tor in optimization of the objective. Indeed, if the outer prod-
uct term were absent from this expression, the problem would
consist solely of optimizing each sensor location w.r.t. the in-
terference sources by minimizing σ2

k (sk) for all k. The outer
product can in a way be seen to force a compromise between
optimality of each sensor w.r.t. the net interference configu-
ration and orthogonality of the net sensor configuration. Let
us for the moment neglect this compromise and focus on the
expression for σ2

k (sk) given in (3) for the kth sensor. It can
easily be shown that for L = 1, σ2

k (sk) is minimum when the
sensor is positioned on the farthest point from the predicted
location of the interfering target on the circle with radius ρ
centered at the predicted location of TOI.

Based on the previous reasoning, we propose our first so-
lution based on optimizing a weighted combination of the
sensor-interferer distances,

θ̃k = argmax
θk

L∑
l=1

gl ‖sk − q̂l‖2

subject to sk = x + ρ
[
cos θk sin θk

]>
, (12)

where gl are weighting coefficients chosen to affect the so-
lution’s optimality w.r.t. minimizing the expression (3). For
what follows, we write the interference locations in polar co-
ordinates as

q̂l = x + φ̂l
[
cos λ̂l sin λ̂l

]>
. (13)

It can be shown that the solution to (12) is given by

θ̃k = atan2

(
L∑
l=1

glφ̂l sin λ̂l,

L∑
l=1

glφ̂l cos λ̂l

)
. (14)

4Even one interferer eliminates the possibility of a closed-form solution.

We can then select a solution to minimize (3) as

θk =
nπ

2
+ θ̃k , n = argmin

n∈N
σk

(
ρ

[
cos
(
nπ
2 + θk

)
cos
(
nπ
2 + θk

)]) .
(15)

The reason this configuration can work reasonably well is in-
tuitive. The objective in (12) ensures the sensor is not posi-
tioned too close on the ρ-circle to any given interferer. The
weighting coefficients can be chosen in a number of differ-
ent ways. One way is to simply assign maximum weight to
the term involving the interference source closest to the target
location. While this solution can perform well if there is a
single dominating interferer, it can deteriorate rapidly when
this assumption does not hold.

The second method we propose is based on a piecewise-
linear approximation to (3). In what follows, we will assume
the parameter values α = 2 and ε = 0 for the measurement
model in (1). While the results can be extended to cover more
general values, the derivation is considerably lengthier and
would not contribute to the main idea here. The form for (3)
then becomes:

σ2
k (sk) = σ2

v +

L∑
l=1

(
Φ2α2σ2

l

‖sk − q̂l‖6

)
. (16)

We propose to approximate each term of the sum in (16) as
follows:

σ2
k,l (sk) ,

(
Φ2α2σ2

l

‖sk − q̂l‖6

)
≈ m?

k,l (θk)
(
θk − λ̂l

)
+b?k,l (θk) .

(17)
With the functions m?

k,l (θk) and b?k,l (θk) defined as,

b?k,l (θk) = bk,l1
[
θ−k,l ≤ θk < θ+

k,l

]
(18)

m?
k,l (θk) = mk,l

(
1

[
θ−k,l ≤ θk < λ̂l

]
− 1

[
λ̂l ≤ θk < θ+

k,l

])
,

(19)

where 1 [x] denotes the indicator function for the argument
and the slope constant mk,l is the scaled magnitude5 of the
derivative ∂

∂θk
σ2
k,l (sk) evaluated at half-max6, noted as θHk,l,

θHk,l = λ̂l + arccos


(

1− 2
1
3

)(
ρ2 + λ̂2

l

)
+ 2

2
3 ρλ̂l

2ρλ̂l

 ,

mk,l = c

∣∣∣∣∣∣∣−
6Φ2α2σ2

l ρφ̂l sin
(
θHk,l − λ̂l

)
(
ρ2 + φ̂2

l − 2ρφ̂l cos
(
θHk,l − λ̂l

))4

∣∣∣∣∣∣∣ , (20)

5The approximation tends to underestimate σ2
k,l (sk) when c = 1. Set-

ting c = 1√
2

yields a substantial improvement.
6The notion half-max is defined as the value for θk where σ2

k,l (sk) is
half of its maximum.
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Step 1: For each segment Ψi ∈ Ψ form
{

Ψ
(m)
i

}
m=1:M

where, Ψ
(m)
i = Ψ

(−)
i + max

(
mπ
K ,

m
(

Ψ
(+)
i −Ψ

(−)
i

)
M

)
.

Step 2: Augment Ψ to Ψ(a) with all
{

Ψ
(m)
i

}
m=1:M

Step 3: Choose θ1 as argminΨ(a) σ2
1 (s1). Set k = 2.

Step 4: Form all K-tuples θ̂τ = {θ1:k−1, τ} with τ ∈ Ψ(a).
Step 5: Compute O(τ) for the k sensor arrangement θ̂τ .
Step 6: Set θ1:k = argmaxθ̂τ O

(τ). If k < K go to Step 4.

Table 1. Fast-Piecewise Algorithm Summary

and the remaining terms are defined as,

bk,l =
Φ2α2σ2

l(
ρ2 + λ̂l

2
− 2ρλ̂l

)3 , θ±k,l = λ̂l ±
bk,l
mk,l

(21)

with all the points of θk understood to be w.r.t. modulo 2π.
An approximation to the minimum of (3) is then easily

found by minimizing over each distinct segment of the piece-
wise function. Namely, the set of all points

(
θ−k,l, λ̂l, θ

+
k,l

)
are arranged into a sorted array Ψ. The ith non-overlapping
line segment formed by two adjacent points of this array is la-
beled Ψi, written as

[
Ψ

(−)
i ,Ψ

(+)
i

]
. The critical point of each

segment, denoted as Ψ
(?)
i is given by,

Ψ
(?)
i =


Ψ

(−)
i if

L∑
l=1

m?
k,l

(
Ψ

(−)
i

)
> 0

Ψ
(+)
i if

∑L
l=1m

?
k,l

(
Ψ

(−)
i

)
< 0

1
2

(
Ψ

(+)
i + Ψ

(−)
i

)
if
∑L
l=1m

?
k,l

(
Ψ

(−)
i

)
= 0.

(22)
The optimal point is then simply argmini σ

2
k

(
Ψ

(?)
i

)
.

While the piecewise algorithm’s final result is to provide
an approximation to the global minimum value for σ2

k (sk),
we can also use the points in Ψ to maximize (10) over a dis-
crete set of K-tuples as opposed to maximization over RK .
Various algorithms can be formulated that make best use of Ψ
in optimizing (10). Here we present one possibility, labeled
as Fast-Piecewise, and outlined in Table 1. Notice in step 1
the notation {Ψm

i }m=1:M which refers to a set of M points
derived from the i-th segment Ψi; here Ψ

(m)
i is them-th point

from that set.

4. ALGORITHM PERFORMANCE

We compared the performance in an example scenario be-
tween Fast-Piecewise, Genetic Algorithm (GA), and the
Quasi-Newton method, with two separate runs, the first con-
sisting of two interferers and the second with six. In both
cases, φ̂l = 2 for all l except the first, for which φ̂1 = 1.5.

The values for λ̂l were fixed at 0,π2 ,π8 , 3π
2 , and π for the sec-

ond through the sixth interferers, respectively. The value
for λ̂1 was varied uniformly over 0 to 2π for 50 different
values, with each marking a separate trial of the given run
(and producing different objective values). The remaining
parameter values were fixed at M = K, α = 2, ε = 0,
Φ = 10, σ2

v = 0.01, and σ2
l = 0.01 for all l. The objective

function O at each different position of λ̂1 is plotted in Fig.
1. It is seen that Fast-Piecewise performed equally well to the
alternative techniques, yet it has been found to be roughly 60
times faster.
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Fig. 1. Comparison of proposed solution to numeri-
cal/evolutionary techniques.

5. CONCLUSION

In this paper, an analysis regarding optimal sensor position-
ing within a particular MTT environment was conducted. The
location of a single TOI is estimated using a group of RSS
sensors whose measurements are corrupted by other targets
existing within the environment. This scenario was motivated
to employ a multi-agent distributed tracking system to solve
the full MTT problem. Each agent tracks a single target and
exchanges estimates with other agents to cope with the afore-
mentioned measurement interference. Optimality criteria for
the problem were derived and a suboptimal solution based
on a piecewise linear approximation to the objective function
was found. This solution was compared to other well-known
numerical techniques and was found to yield comparable ac-
curacy with vastly superior computational efficiency.
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