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ABSTRACT

We introduce in this paper the Random Exchange Diffu-
sion Bernoulli Filter (RndEx-BF), which enables joint target
detection and tracking by a network of collaborative sen-
sors. RndEx-BF is a fully distributed algorithm that, unlike
consensus-based solutions, does not require iterative internode
communication between sensor measurements. Internode
communication cost is further reduced by a novel hybrid
GMM/SMC implementation of the proposed filter. Experimen-
tal results show that RndEx-BF approaches the performance
of a flooding-based implementation of the optimal centralized
Bernoulli filter with much lower bandwidth requirements.

Index Terms— Bernoulli Filter, Sequential Monte Carlo,
Diffusion, RSS Sensors, Joint Detection and Tracking.

1. INTRODUCTION

Fully distributed algorithms for cooperative tracking of hidden
state vectors using multiple sensor network observations have
been extensively proposed in recent times using both linear
Kalman filters, e.g. [1], [2], [3], and particle filters (PFs), e.g.
[4], [5], [6], [7], [8]. In more challenging scenarios, however,
the tracked state vector may randomly appear in or disappear
from the network’s surveillance space and the network must
perform joint detection and tracking at each time instant.

In [9], we considered the problem of fully distributed detec-
tion and tracking in an application of received-signal-strength
(RSS) sensor networks by extending the original kinematic
state vector with an additional discrete-valued state that indi-
cated presence or absence of the emitter. Distributed particle
filtering [10] was then performed in all dimensions of the
extended state space. In the present paper, we follow an al-
ternative, more efficient approach based on random finite sets
(RFS) and set calculus [11]. Our goal is to derive a new, fully
distributed version of the RFS-based Bernoulli filter [12], [13]
for joint detection and tracking of a single emitter.

To achieve the desired low internode communication cost
requirements, we apply to the Bernoulli filter framework the
random exchange diffusion technique in [7] allowing each

network node to recursively propagate both its estimated pos-
terior probability of presence of the emitter and the posterior
probability density function of the kinematic state vector given
that the emitter is present, with both posteriors conditioned
on a random subset of network measurements coming from
random locations in the entire network. Unlike consensus-
based algorithms [4], [5], [6], the proposed algorithm does not
require multiple iterative internode communication between
the arrival of two consecutive sensor measurements. A novel
low-bandwidth approximate implementation of the derived
RndEx-BF tracker is additionally proposed combining Gaus-
sian mixture models (GMMs) [14] and sequential Monte Carlo
(SMC) methods [15].

The paper is divided into 6 Sections. Sec. 1 is this Introduc-
tion. In Sec. 2, we review the models for state dynamics and
RSS sensor observations using the RFS formalism. In Sec. 3,
we derive the novel distributed RndEx-BF algorithm using
set calculus and the methodology in [7]. Sec. 4 describes the
hybrid GMM/SMC implementation of the algorithm proposed
in Sec. 3. Simulations results, including comparisons to the
optimal centralized Bernoulli filter, are presented in Section 5.
Finally, we offer our conclusions in Sec. 6.

2. STATE AND SENSOR MODEL

Notation We use uppercase letters, e.g. Xn, to denote random
finite sets or samples of random finite sets with the proper
interpretation implied in context. Lowercase letters, e.g. xn,
are used to denote both random vectors and samples of ran-
dom vectors, again with the proper interpretation implied in
context1. Probability density functions (p.d.f’s) of random
finite sets, see definition in [11], are denoted by f̃(X) whereas
f(x) denotes the p.d.f. of a random vector. Accordingly, we
denote the integral of a set function [11] g as

∫
g(X) δX and

the integral of a function h of a real variable as
∫
h(x) dx.

The symbol N (m,σ2) denotes a one-dimensional Gaussian
distribution with mean m and variance σ2 and the symbol ∝
denotes “proportional to”.

1When a random vector has dimension 1× 1, we denote it using
lowercase italic letters, e.g. zn,r .
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Target Model Let S ⊆ R2 denote a surveillance space in the
(x, y) plane. Assuming that at most one target is present in
S at any given discrete time instant n, the state set at time n
is modeled as an RFS [11] whose samples Xn can be either
the empty set Xn = ∅ in case the target is absent, or a single-
element set Xn = {xn}, when a single target with state vector
xn is present. When a target is present, xn = [xn ẋn yn ẏn]T

collects the positions and velocities of the target centroid,
respectively in the x and y coordinates.

When no target is present at instant n, a new target may
enter the surveillance space S at instant n + 1 with birth
probability pb. In this case, the initial target state is modeled
as a random vector xn+1 distributed according to a prior p.d.f.
fb(xn+1). Conversely, when a single target with state xn is
present, it stays within S with survival probability pv(xn) or
leaves S at instant n + 1 with probability 1 − pv(xn). If
the target survives, the state vector at instant n + 1 given a
realization xn of the state vector at instant n is modeled by
a random vector xn+1 distributed according to the transition
p.d.f. f(xn+1|xn).

Given the assumptions in the previous paragraph, the cor-
responding set transition p.d.f. is given by, see [12],

f̃(Xn+1|Xn) =


1− pb; Xn = ∅, Xn+1 = ∅
pb fb(xn+1); Xn = ∅, Xn+1 = {xn+1}
1− pv(xn); Xn = {xn}, Xn+1 = ∅
pv(xn) f(xn+1|xn); Xn = {xn},

Xn+1 = {xn+1}.
(1)

In this paper, we assume the linear white noise acceleration
model used in [7] to specify f(xn+1|xn). The survival proba-
bility pv(xn) is defined accordingly as the probability of the
target staying within S at instant n+ 1 given its current state
xn, i.e. pv(xn) = Pr({xn+1 ∈ S}|xn) =

∫
S
f(x|xn)dx,

where Pr(A) denotes the probability of an event A.

Observation Model We assume that each node r in a network
of R RSS sensors always records at instant n a single-element
RFS measurement taking values Zn,r = {zn,r}, such that,
if Xn = {xn}, then zn,r | xn ∼ N (gr(xn), σ2

r) with gr(.)
defined as [16]

gr(x) = P0 − 10 ζr log

(‖Hx− xr‖
d0

)
, (2)

where xr is the r-th sensor position, ||.|| is the Euclidean
norm, (P0, d0, ζr) are known model parameters, see [16], and
H is a 2 × 4 matrix such that H(1, 1) = H(2, 3) = 1 and
H(i, j) = 0 otherwise. If, on the other hand,Xn = ∅, then the
sensors record only background noise and zr,n ∼ N (0, σ2

r).
Under the previous assumptions, the set observation p.d.f.

at sensor r at instant n is given by [11], [12]

f̃({zn,r}|Xn) =

{
N1(zn,r − gr(xn), σ2

r), Xn = {xn}
N1(zn,r, σ

2
r), Xn = ∅,

(3)
where NL(m,Σ) = 1

(2π)L/2|Σ|1/2 exp(− 1
2mTΣ−1m).

3. RANDOM EXCHANGE DIFFUSION BERNOULLI
FILTER

Assume that, at instant n, any given node s in the network
has a set p.d.f. f̃s(Xn|Z0:n,s) where Z0:n,s collects all RFS
observations that have been assimilated by node s from instant
0 up to instant n. We also assume that

f̃s(Xn|Z0:n,s) =

{
1− γn|n,s, Xn = ∅
γn|n,s fn|n,s(xn), Xn = {xn},

(4)
where γn|n,s physically denotes the probability of a target be-
ing present in the surveillance space at instant n given the
observations contained in the random set Z0:n,s and fn|n,s(.)
denotes the p.d.f. of the state vector xn at instant n given that
a target is present and given the observations in Z0:n,s. In the
sequel, node s sends its set p.d.f. f̃s(Xn|Z0:n,s) to a randomly
chosen neighboring node r in the vicinity of s and, likewise, re-
ceives from node r its corresponding set p.d.f. f̃r(Xn|Z0:n,r).
Using the set integral version of the total probability theo-
rem [11], and assuming the usual conditional independence
hypothesis that f̃(Xn+1|Xn,Z0:n,s) = f̃(Xn+1|Xn), node r
can compute at instant n+ 1, the predicted set p.d.f.

f̃r(Xn+1|Z0:n,s) =

∫
f̃(Xn+1|Xn) f̃s(Xn|Z0:n,s) δXn

= f̃(Xn+1|∅) f̃s(∅|Z0:n,s)

+

∫
f̃(Xn+1|{xn})f̃s({xn}|Z0:n,s) dxn.

Using (1) and (4), it follows that, for Xn+1 = ∅,
f̃r(∅|Z0:n,s) = (1− pb) (1− γn|n,s) + γn|n,s

×
∫

[1− pv(xn)] fn|n,s(xn)dxn. (5)

Similarly, for Xn+1 = {xn+1}, we get from (1) and (4) that

f̃r({xn+1}|Z0:n,s) = pb fb(xn+1)(1− γn|n,s) + γn|n,s

×
∫
pv(xn) f(xn+1|xn)fn|n,s(xn)dxn. (6)

Next, solving the system of equations

1− γn+1|n,r = f̃r(∅|Z0:n,s)

γn+1|n,r fn+1|n,r(xn+1) = f̃r({xn+1}|Z0:n,s)

with f̃r(∅|Z0:n,s) and f̃r({xn+1}|Z0:n,s) given respectively
by (5) and (6), it follows after some algebraic manipulation
that

γn+1|n,r = (1−γn|n,s)pb+γn|n,s

∫
pv(xn) fn|n,s(xn) dxn

(7)
and

γn+1|n,r fn+1|n,r(xn+1) = (1− γn|n,s)pb fb(xn+1)

+ γn|n,s

∫
pv(xn) f(xn+1|xn)fn|n,s(xn) dxn. (8)
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Let Zn+1,r denote in the sequel the disjoint union of the RFS
observation Zn+1,r available at node r at instant n+ 1 and the
RFS observations {Zn+1,l} available at all nodes l ∈ N(r),
where N(r) denotes the neighborhood of node r. Using the set
version of Bayes Law [11], node r at instant n+ 1 computes
then the updated conditional set p.d.f. f̃r(Xn+1|Z0:n+1,r)
where Z0:n+1,r = Zn+1,r ∪ Z0:n,s by making

f̃r(Xn+1|Z0:n+1,r) =
f̃(Zn+1,r|Xn+1)

C̃n+1,r

f̃r(Xn+1|Z0:n,s),

(9)
where the proportionality constant C̃n+1,r is computed as [11]

f̃(Zn+1,r|∅)f̃r(∅|Z0:n,s) +

∫ [
f̃(Zn+1,r|{xn+1})

× f̃r({xn+1}|Z0:n,s)dxn+1

]
. (10)

In (9), we used the usual assumption of conditional indepen-
dence of current and past observations given the current state,
i.e f̃(Zn+1,r|Xn+1,Z0:n,s) = f̃(Zn+1,r|Xn+1). Moreover,
provided that the sensor measurement noise is independent
from node to node and Zn+1,r is a disjoint union of Zn+1,r

and the sets Zn+1,l, ∀l ∈N(r), we can write further that

f̃(Zn+1,r|Xn+1) =
∏

l∈{r}∪N(r)

f̃(Zn+1,l |Xn+1) (11)

with f̃(Zn+1,l|Xn+1) given by (3) replacing n with n + 1.
The disjoint union hypothesis is guaranteed if each sensor
measurement is uniquely identified by its label, see [11].

Substituting (3) in (11), and (11) in (9), and recalling
that f̃r(∅|Z0:n,s) = 1 − γn+1|n,r and f̃r({xn+1}|Z0:n,s)
= γn+1|n,r fn+1|n,r(xn+1), it follows, after solving for
f̃r(∅|Z0:n+1,r) = 1 − γn+1|n+1,r and f̃r({xn+1}|Z0:n+1,r)
= γn+1|n+1,r fn+1|n+1,r(xn+1), that

fn+1|n+1,r(xn+1) =

 ∏
l∈N̄(r)

λzn+1,l
(xn+1)

fn+1|n,r(xn+1)

Cn+1,r

(12)
where N̄(r) = {r} ∪ N(r), the proportionality constant
Cn+1,r in (12) is given, at each node r, by the integral

Cn+1,r=

∫  ∏
l∈N̄(r)

λzn+1,l
(xn+1)

fn+1|n,r(xn+1) dxn+1,

and

λzn,l
(xn) =

N1(zn,l − gl(xn), σ2
l )

N1(zn,l, σ2
l )

(13)

with N1(.) and gl(.) defined as in the observation model (3).
Similarly, we can also show that

γn+1|n+1,r =
γn+1|n,r Cn+1,r

(1− γn+1|n,r) + γn+1|n,r Cn+1,r
. (14)

4. HYBRID GMM/SMC IMPLEMENTATION

In this Section, we introduce an approximate implementation
of the diffusion Bernoulli filter derived in Sec. 3. Assume that
node s at instant n has a weighted particle set {(w(j)

n,s,x
(j)
n,s)},

j ∈ {1, 2, . . . , Jb + J}, which represents the p.d.f. fn|n,s(xn)
in the Monte Carlo sense [15]. We fit that Monte Carlo repre-
sentation then to a GMM [14] to build a parametric approxi-
mation to fn|n,s given by

f̂n|n,s(xn) =

K∑
k=1

η(k)
n,sNL(xn −m(k)

n,s, Σ(k)
n,s), (15)

where L = 4. In addition, using the weighted particle set, the
integral on the right-hand side of (7), which is the expected
value of pv(xn) with respect to the p.d.f. fn|n,s(xn), is ap-
proximated locally at node s as p̂v,s =

∑Jb+J
j=1 w

(j)
n,s pv(x

(j)
n,s).

Node s now transmits to the neighboring node r only the
parameters of the GMM approximation in (15) plus γn|n,s
and p̂v,s. Node r then performs the calculations in (7) and (8)
replacing fn|n,s with f̂n|n,s and pv(xn) with p̂v,s. Eq. (7) thus
reduces to γn+1|n,r = (1− γn|n,s)pb + p̂v,sγn|n,s. Assuming
further as in [7] that xn+1|xn ∼ N (F xn,Q), the integral on
the right-hand side of (8) is in turn computed analytically2 as

Î(xn+1) =

K∑
k=1

p̂v,sη
(k)
n,sNL(xn+1−Fm(k)

n,s,FΣ(k)
n,sF

T +Q).

In the sequel, node r samples at instant n + 1 a new set of
particles x

(j)
n+1,r ∼ fb(xn+1), j = 1, . . . , Jb and x

(j)
n+1,r ∼

Î(xn+1)/p̂v,s, j = Jb + 1, . . . , Jb + J . From (8) and (12), it
can be shown that {(w(j)

n+1,r,x
(j)
n+1,r)}, j ∈ {1, . . . , Jb+J}, is

a properly weighted particle set to represent fn+1|n+1,r(xn+1)
at node r at instant n+ 1 provided that

w
(j)
n+1,r ∝ w̃

(j)
n+1|n,r

∏
l∈{r}∪N(r)

λzn+1,l
(x

(j)
n+1.r) (16)

with proportionality constant such that
∑
j w

(j)
n+1,r = 1 and

w̃
(j)
n+1|n,r=


(1−γn|n,s)pb
Jbγn+1|n,r

j = 1, . . . , Jb.
γn|n,sp̂v,s

J γn+1|n,r
j = Jb + 1, . . . , Jb + J.

(17)

Finally, γn+1|n+1,r is updated at node r according to (14)
using the approximation

Cn+1,r ≈
Jb+J∑
j=1

w̃
(j)
n+1|n.r

∏
i∈{r}∪N(r)

λzn+1,l
(x

(j)
n+1.r). (18)

If γn+1|n+1,r > 1/2, node r decides that the target is present
at instant n+1 and estimates its kinematic state as x̂n+1|n+1,r

=
∑
j w

(j)
n+1,r x

(j)
n+1,r with j ∈ {1, . . . , Jb + J}.

2The closed form solution to the integral in (8) is restricted to linear,
Gaussian dynamic models. On the other hand, provided that one is able to
compute the likelihood ratios in (13), the proposed implementation can be
used with arbitrary non-linear, possibly non-Gaussian observation models.
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5. SIMULATION RESULTS

We evaluated the performance of the RndEx-BF tracker over
100 Monte Carlo runs in a simulated scenario with R = 25
RSS sensors scattered within a surveillance space S of size
120 m× 120 m. The sensor model parameters were kept fixed
during all Monte Carlo runs and set to the same values as in
[9]. Fig. 1 shows the sensor positions, the available network
connections assuming that each node communicates with other
nodes within a range of 40 m, and two consecutive realizations
of the emitter trajectory within a simulation period of 200 s.

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

← tb = 2 s

← tb = 97 s
Sb

S

y
[m

]

x [m]

Ground truth Sensors Connections

Fig. 1. Evaluated scenario.
The prior set p.d.f. f̃s(X0) at each node swas initialized at

time step 0 with a priori probability of target presence γ0|0,s =
0. The birth density fb(xn+1) was assumed uniform on a
square Sb ⊂ S of size 30 m × 30 m for the emitter’s initial
position in Cartesian coordinates and Gaussian with mean[√

2 m/s 45◦
]T

and covariance matrix diag(0.32, 52) for the
emitter’s initial velocity in polar coordinates.

The RndEx-BF tracker using a single Gaussian3, i.e. K =
1, was compared to the ReDif-PF tracker proposed in [9] and
to an alternative flooding [17] implementation of the optimal
centralized Bernoulli filter [12], referred to in this paper as
the CbBF tracker. Each node r running the CbBF tracker
assimilates its local measurement Zn+1,r only and uses then
the flooding scheme in [8] to compute, in a fully distributed
fashion, the joint likelihood of all network measurements at
time n+1. The RndEx-BF and CbBF trackers employed Jb =
J = 250 particles to represent the posterior fn|n,s(xn) at a
node s. To avoid unnecessary computations, when γn|n,s ≈ 0,
both algorithms sampled Jb particles from the prior fb(xn+1)
only. Most of the time though, when γn|n,s ≈ 1 , they sampled
just J particles from the proposal Î(xn+1)/p̂v,s. The ReDif-
PF tracker, on the other hand, employed a fixed number of 500
particles along all simulated emitter trajectories.

Fig. 2 shows the root-mean-square (RMS) error norm of

3No significant improvement was observed for K = 2.

the emitter position estimates over time for the evaluated al-
gorithms. The RMS error was computed considering all sim-
ulated emitter trajectories at each Monte Carlo run. The bars
along the curves represent the standard deviation of the error
norm across all network nodes. As expected, compared to
CbBF, which mimics the optimal centralized Bernoulli filter,
the RndEx-BF tracker has a greater RMS error since it assimi-
lates less information at each network location than the former.
On the other hand, despite using a lower number of particles
throughout most of the emitter trajectory, RndEx-BF has a
much lower RMS error compared to ReDif-PF, especially after
the second emitter is acquired, indicating that RndEx-BF is
not significantly affected by the on/off switching of the emitter
presence/absence state as ReDif-PF is.

0 50 100 150 200
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4
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16

32

E
rr
o
r[
m
]

t [s]

CbBF
RndEx-BF
ReDif-PF

Fig. 2. Evolution of the estimated position RMS error norm.
Table 1 summarizes the communication and computation

cost of each algorithm, see [9] for a description of the per-
formance metrics. The RndEx-BF tracker has an average
communication cost per node three orders of magnitude lower
than that of the CbBF with one sixth of the processing cost.
The global probability of error (misses or false alarms) over all
network node detection decisions was 0.02 % for the RndEx-
BF detector, down from 0.22 % when ReDif-PF was used. No
detection errors were made by CbBF in our experiments.

Table 1. Average communication and processing cost.
RX Rate TX Rate Duty Cycle

CbBF 116 KB/s 24 KB/s 7.6 %
ReDif-PF 148 B/s 132 B/s 2.9 %
RndEx-BF 156 B/s 140 B/s 1.3 %

6. CONCLUSIONS

We introduced in this paper the RndEx-BF filter for joint target
detection and tracking in sensor networks. RndEx-BF is a fully
distributed algorithm that does not require iterative internode
communication between sensor measurements. Communica-
tion cost is further reduced using a novel hybrid GMM/SMC
implementation of the filter. Experimental results show that
RndEx-BF approaches the performance of the optimal CbBF
algorithm, but with lower communication cost, and also com-
pares favorably to the joint detector/tracker proposed in [9].
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