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ABSTRACT

The Hough transform line detection method has been estab-
lished as a viable technique for track-before-detect (TBD).
However, its basic operation of binning and accumulating
votes in the parameter space is computationally expensive. A
more critical weakness of Hough transform is its dependence
on parameter tuning (e.g., bin size and various thresholds),
which can be non-intuitive and data-dependent. This leads to
low detection rates in data with low signal-to-noise ratio and
significant clutter. In this paper we propose a line detection
algorithm with guaranteed global optimality for TBD. Our
algorithm is based on the plane sweep algorithm for robust
linear regression, with novel modifications to ensure its appli-
cability under the TBD setting. Unlike the Hough transform,
our algorithm has only one parameter to set (essentially the
sensor false alarm rate) and can deterministically find the
best solution according to a well-defined criterion. Simula-
tion results on multi-dimensional TBD problems validate the
accuracy and efficiency of our method.

Index Terms— track-before-detect, plane sweep.

1. INTRODUCTION

TBD refers to a tracking paradigm whereby measurements
are accrued over an extended period such that target declara-
tion is delayed until sufficient information is available. It is
usually applied in low signal-to-noise ratio (SNR) scenarios,
where a low first-threshold is applied to allow the accumu-
lation of weak target signals (first-threshold crossings). Al-
though this also yields significant false alarms, accumulating
evidence over time enable the detection of faint targets.

A popular class of TBD algorithms are those based on the
Hough transform (HT) [1, 2, 3, 4]. HT is widely used in image
processing to detect (straight) line segments [5]. In tracking
problems where the observation time is long and targets have
low acceleration, the scan outputs tend to lie on a straight line
when plotted against time [6]. There are also targets (e.g.,
large vessels in open water) that typically navigate using lin-
ear path segments. Such conditions can be exploited by HT
to perform noncoherent integration over multiple scans [1].

Standard HT operates on 2D data. In the context of TBD,
this usually implies that a single sensor measurement (e.g.,
range) is coupled with the time axis. The method builds a

histogram in the 2D parameter space of lines (typically in po-
lar representation), and each data point gives one vote for the
bins corresponding to lines that pass through the point. The
line corresponding to the bin with the highest vote count is
regarded to have the strongest evidence to exist in the data.

To conduct multi-dimensional TBD, Moyer et al. [7] pro-
posed to take two dimensions of the multi-dimensional data at
a time, and apply standard HT to detect lines in each 2D sub-
problem. A gating process aggregates the multiple 2D line
detections to yield an overall result. Fig. 1(a) depicts the idea.

A well-known practical limitation of HT is the high sen-
sitivity of the method to parameter settings. Most notably, the
ideal binning resolution of the histogram is very dependent
on the actual data characteristics. Various thresholds must
also be tuned, e.g., the minimum amount of votes before a de-
tection is declared. Finally, heuristic postprocessing must be
conducted to achieve the intended result, e.g., to suppress re-
dundant detections from neighbouring bins with equal votes.
These issues make HT impractical in real-life systems.

In this paper, we propose a TBD line fitting algorithm
with optimality guarantees. Our method is inspired by robust
linear regression [8] based on the plane sweep method [9],
but with novel modifications to ensure applicability under the
TBD setting. Unlike HT, our algorithm deterministically and
efficiently finds the globally optimal line (w.r.t. a well defined
criterion) in a given input data. In addition, the plane sweep
algorithm requires only a single parameter related to the sen-
sor false alarm rate, which can be precalibrated in practical
systems. When applied to Moyer et al.’s multi-dimensional
TBD framework, our method exhibits much higher accuracy
and dependability than previous techniques.

2. RELATION TO PRIOR WORK

Let there be N input points and ρ × θ bins in the HT accu-
mulator. In the binning phase, the HT algorithm iterates over
all the points, where each point is converted via Radon trans-
form to a sinusoid used to vote for the bins. In the detection
phase, all the bins are examined to find the global maximum.
Overall, the computational effort takes O(Nθ + ρθ) time.

Several authors have attempted to improve the usability of
HT in TBD. Fan et al. [10] applied randomised Hough trans-
form (RHT) [11] to reduce the computational burden of HT.
Instead of creating a histogram, the parameter space is sam-
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Fig. 1. (a) Illustrating TBD as a line fitting problem. The target has 0.8 probability of detection (PD), while the false alarm
(FA) rate is 7× 10−4. The 3D data is projected down to 2D by pairing two dimensions at a time; two examples are shown here.
(b) The least k-order robust regression for line fitting amounts to finding 3 equioscillating points with the smallest δ, where k
points (here, k = 9) have residual ≤ δ. (c) The equivalent problem in the dual space can be solved efficiently by plane sweep.

pled by repeatedly fitting a line onto two randomly sampled
data points. A linear array of bins is then maintained to ac-
cumulate the votes for lines that are sampled. While sam-
pling alleviates high memory consumption, the introduction
of randomness reduces the precision and repeatability of the
results. A similar weakness affects Random Sample Consen-
sus (RANSAC) [12], which uses a random sampling proce-
dure to find the line with maximum consensus.

Beyond TBD, HT has been applied to a wide range of
signal processing problems [14, 15, 16, 17, 18, 19]. However,
HT is only one among a large body of methods for line de-
tection. Our paper thus also serves to introduce a better line
detection method to the signal processing community.

3. TBD WITH PLANE SWEEP

Moyer et al.’s [7] multi-dimensional reduction method allows
us to focus on processing 2D data X = {xi}Ni=1, where each
xi = [ti,mi]

T comprises of a sensor measurement mi (e.g.,
range, bearing), and the time ti at which the measurement was
recorded (here, we always take ti as time to remind the reader
that the points may not lie in general position. In practice, ti
can be another measurement, and this does not invalidate our
method below). Our goal is to fit a line onto X , under the
assumption that the target follows largely a linear path [1].
Note that there are also significant false alarms (outliers) in
X . Fig. 1(a) illustrates such a data.

3.1. Problem statement

A false alarm rate of ρ implies that k = (1 − ρ)N of the
measurements in X arose from the target of interest. We aim
to detect the line that passes through the k true detections. To
measure the distance of points to lines, we designate

ri(a, b) = |ati + b−mi| (1)

as the residual of the i-th point xi to the line defined by the
parameters a and b. Our aim is to seek the a and b that solve

min
a,b

r(k)(a, b), (2)

where r(k)(a, b) is the k-th largest residual given a and b, i.e.,

r(j)(a, b) < r(k)(a, b) ∀ j < k. (3)

Problem (2) is an instance of the least k-th order estimator for
robust regression [20]. We emphasise that the only required
parameter k depends on the false alarm rate of the sensor.

It has been proven [8] that the solution is a line that
equioscillates between three points — the three points have
equal residual δ to the line, with one of the points on the
other side of the line — and there are k points with residual
less than or equal to δ to the line; see Fig. 1(b). Among all
equioscillating lines, the one that minimises δ is the optimal
solution to (2). One can envision a simple O(N3) method
that examines all triplets of points from X . However, a more
efficient scheme can be constructed by utilising duality.

3.2. Point and line duality

In HT the Radon transform is applied to map points to sinu-
soids. Here, a different kind of duality is employed. Define
D : (t,m) 7→ (x, y) as a transformation from the measure-
ment space (t,m) to the dual space (x, y). Specifically, D
produces the point-to-line mapping

x = [t,m]T 7→ D(x) : y = tx+m. (4)

Also, D conducts the following line-to-point mapping

l : m = at+ b 7→ D(l) = [−a, b]T . (5)

Observe that our aim to find the line parameters a and b that
solves (2) is now reduced to finding a point in the dual space.
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Under D, a point x that is determined by the two lines lp
and lq is mapped to the line D(x) that passes through the two
pointsD(lp) andD(lq). Similarly, a line l that passes through
the two points xp and xq is mapped to the point D(l) that
is determined by the two lines D(xp) and D(xq). Further,
D preserves the vertical ordering between points and lines.
More formally, if point xp = [tp,mp] and line lq : m =
aqt+ bq has (signed) vertical distance

δ′ = aqtp + bq −mp, (6)

then it can be shown that the line D(xp) : y = tpx+mp has
(signed) vertical distance to point D(lq) = [−aq, bq]T of

δ′′ = bq − (−tpaq +mp) = δ′. (7)

More intuitively, if xp is above lq with distance δ′, then
D(xp) is above D(lq) by the same distance. These properties
are crucial for transforming (2) to a more amenable problem.

GivenX , we first map each xi to the line li : y = tix+mi

in the dual space. There, solving (2) is equivalent to find-
ing vertical line segments that begin from the intersection of
two lines and touches a third line, and where there are k lines
that intersect with the line segments; Fig. 1(c) illustrates. The
shortest of such vertical line segments is the solution to (2).
This problem can be solved efficiently by plane sweep [8].

3.3. Plane sweep algorithm

The idea is to scan the dual space with a sweep line (SL);
see Fig. 1(c). When an intersection is found, we test whether
there is a vertical line segment from the intersection to another
line with k lines passing through the segment. Clever usage
of data structures allows this to be done inO(N2 logN) time.

The original algorithm of [8], however, is not suitable for
TBD, since it assumes that X is in general position, e.g., no
two points share the same t value since this yields parallel
lines in the dual space. In typical tracking systems, multiple
measurements are produced in the same time instance, yield-
ing multiple points with the same t values [10]. Subjecting X
to the original algorithm of [8] would result in failure.

Here, we present our novel plane sweep algorithm tailored
to the TBD problem; Algorithm 1 summarises our method.
Similar to [8], our method employs two data structures LIST
and HEAP. The former is a linked list that stores the li’s based
on their top-down order of crossing with SL. To initialise
LIST, the li’s are sorted increasingly in slope ti. For lines
which have the same ti values (i.e., parallel lines), they are
additionally sorted decreasingly in intercept mi. After initial-
isation, the line with the smallest slope and largest intercept is
at the front of LIST, while the line with the largest slope and
smallest intercept is at the rear of LIST. This corresponds to
placing SL at the left of all the intersections of the li’s.

HEAP is a min-heap that stores a set of intersection points
of the li’s. It allows to retrieve in O(1) time the leftmost

Algorithm 1 Plane sweep algorithm for TBD.
Require: Data X = {xi}Ni=1 where xi = [ti,mi]

T , sensor
false alarm rate ρ.

1: k ← (1− ρ)N .
2: For all i, set li as line with slope ti and intercept mi.
3: Store li’s in linked-list LIST, then sort LIST increasingly

by ti, then decreasingly by mi for tie-breaking.
4: HEAP← empty min-heap.
5: δ ←∞.
6: for p = 1, 2, . . . , N − 1 do
7: if p-th and (p+ 1)-th items in LIST not parallel then
8: Calculate intersection point and insert into HEAP.
9: end if

10: end for
11: while HEAP not empty do
12: Remove leftmost point d from HEAP.
13: for each l = {lp, lq} which gave rise to d do
14: δ′ ← distance of line k positions before l in LIST.
15: δ ← min(δ, δ′).
16: δ′ ← distance of line k positions after l in LIST.
17: δ ← min(δ, δ′).
18: end for
19: Swap lp and lq in LIST.
20: For newly adjacent lines in LIST which are not paral-

lel, calculate intersection and insert into HEAP.
21: end while
22: return Centre position of vert. segment with smallest δ.

intersection point contained therein, and to insert or delete
intersection points in O(logN) time. To initialise HEAP, we
traverse the initial LIST and calculate for each neighbouring
li’s their intersection and insert it into HEAP. Parallel lines
are simply skipped. This ensures that the leftmost intersection
point exists in HEAP before the main operations begins.

In the rest of the algorithm, we repeatedly remove the left-
most intersection point in HEAP - this simulates the visiting
of SL on the intersection point. Given a removed point, we
identify the two neighbouring lines lp and lq in LIST that
gave rise to the point. We then find (if exist) the k-th line
before and after the position of lp and lq in LIST, and calcu-
late their vertical distance to lp and lq . This corresponds to
finding a vertical segment with the desired property indicated
in Fig. 1(c). The shortest segment found thus far is recorded.

After the above operation, the SL is considered to have
moved past the point. This corresponds to a swap in the po-
sition of lp and lq in LIST. New intersection points are then
generated by the pairing of lp and lq with their respective new
neighbours (if exist, and ignoring lines that are parallel). The
new points are then inserted into HEAP and the process con-
tinues. The procedure ensures that the next point to be re-
moved from HEAP is always the closest one to the right of
the SL. The algorithm terminates when HEAP is empty.
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4. SIMULATIONS

Our simulation data is generated as follows: for each data in-
stance, a line equation in 3D is randomly generated. One of
the axis is chosen as the time dimension with T number of
scans, while the other two dimensions define a 100 × 100-
unit range. A point is generated on the line at each scan with
probability equal to PD. False measurements are then pro-
duced randomly in each scan according to the FA probability.
We corrupt the points with Normal noise of standard devia-
tion σ. This produces an instance of a 3D data {ti, xi, yi}Ni=1.
See Fig. 2 (left) for an example with T = 100.

Fig. 2. (left) Input data; (right) Final gating outcome. Among
the line detection results in the 3 combinations of pairwise di-
mensions, points circled in black were chosen once as inliers,
green were chosen twice, and red were chosen thrice.

Following [7], we take two dimensions the 3D data at a
time, i.e., {ti, xi}Ni=1, {ti, yi}Ni=1 and {xi, yi}Ni=1, and con-
duct line fitting in each combination. We run and compare
four algorithms: HT, RHT, RANSAC and Plane Sweep (PS).
More specifically, each algorithm is executed to find the line
at each 2D combination, and the inliers lying on the detected
line are identified. The gating procedure of [7] is then em-
ployed to aggregated the inliers selected to obtain the final
result; see Fig. 2 (right) for an example.

To objectively compare the accuracy of the methods, we
introduce a scoring scheme for the final gating result. For a
respective method, after gating, each point {ti, xi, yi} has a
count ci ∈ {0, 1, 2, 3} corresponding to the number of times
it was selected by the line detection processes as an inlier.
Each point also has the ground truth label

li =

{
1, {ti, xi, yi} is an inlier,
−1, otherwise.

(8)

The score of a particular method is then calculated as∑
i

cili, (9)

where higher scores indicate higher line fitting accuracies.
To test the effectiveness of the algorithms under varying

difficulties, we control the σ values and FA probabilities. In
the first experiment, we fixed T = 100, PD = 0.8, FA prob-
ability = 7 × 10−4, and varied σ = 1, 2, . . . , 10. For each
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Fig. 3. Comparison of final gating results of 4 methods under
varying σ and FA probability. Higher scores are better.

σ value, 1000 data instances were generated and the afore-
mentioned procedures were executed. Fig. 3(a) shows the av-
erage scores across the data instances of each method plot-
ted against σ. We repeated the above experiment by fixing
T = 100, PD = 0.8, σ = 6, and varying FA probability
= {1, 2, . . . , 8} × 10−4. Fig. 3(b) shows the result.

The results clearly show that PS outperforms the other
three algorithms (HT, RHT and RANSAC), owing to its guar-
antee to return the globally optimal parameters in line detec-
tion. Although RANSAC is not far behind, its inherent ran-
domness is undesirable for applications that require high re-
peatability and dependability. Note that the score (9) is fair
since none of the algorithms directly optimise this score. In
terms of run time, although PS is slower than the other ran-
domised methods, in all the data instances Algorithm 1 ter-
minated within 2 seconds. Note that the average number of
points N of the data instances is 950.

5. CONCLUSIONS

In this paper we have proposed an alternative line-detection
method for TBD based on plane sweep algorithm. We showed
that our method is more accurate compared to the more estab-
lished methods (HT, RHT and RANSAC). This has opened up
more interesting questions on real time and field usage of PS
algorithm on TBD. We will investigate more on continuous
multi-target application of PS algorithm in the future.
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