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ABSTRACT

Particle filtering is combined with sparse matrix decomposition tech-
niques to address the problem of tracking multiple targets using non-
linear sensor observations measuring signal strength. The unknown
number of targets may be time-varying, while sensors are spatially
scattered. Norm-one regularized matrix factorization is employed
to decompose the sensing data covariance matrix into sparse factors
whose support facilitates the task of associating the targets with sen-
sor measurements. The novel sensors-to-targets association scheme
is developed using distributed optimization which is further inte-
grated with particle filtering mechanisms to perform accurate track-
ing. Numerical tests demonstrate the tracking superiority of the pro-
posed algorithm over alternative approaches.

Index Terms— Particle filtering, sensor-to-targets association,
distributed processing, multi-target tracking.

1. INTRODUCTION

Sensor networks (SNs) allow the collection and distributed process-
ing of information in challenging environments whose structure is
not known and is dynamically changing with time, while multiple
sources/targets may be present. A necessary step in multi-target
tracking is the association of sensors with targets across space and
time. Thus, it is pertinent to identify the sensors that acquire infor-
mative observations about the targets and use only those to perform
tracking. We characterize such sensors as ‘target-informative’ sen-
sors. Many existing tracking techniques require all sensors to be ac-
tive [1,4,21,22] which may be resource-consuming given the locality
of the targets and the fact that only a few sensors bear information
about the field targets. A decentralized algorithmic framework is de-
veloped here that does not require a central fusion center and it can
associate sensors with targets combined with tracking.

Single-target tracking techniques have been developed for SNs
using consensus-averaging techniques [5, 17] combined with par-
ticle filtering, e.g., see [6]. Extended Kalman filtering (EKF) for
tracking a single-target is combined with a probabilistic framework
for selecting sensors in [16]. Existing multi-target tracking appli-
cations perform association in time to determine which measure-
ments, gathered at a single sensor, contain information about a tar-
get [7, 9, 12]. Probabilistic models on the number of targets and
the target-measurement assignments are also employed in [18] to
perform multi-target tracking in single-sensor settings. Improved
particle sampling techniques for single sensor settings are consid-
ered in [27], where particles corresponding to closely spaced targets
are sampled jointly. The latter approaches require the availability
of a probabilistic data model which is utilized to associate measure-
ments acquired across time with the targets present. A centralized
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algorithm, that relies on Markov chain Monte Carlo (MCMC) tools,
performs temporal data association on measurements acquired at a
single-sensor across time in polynomial time [20]. The previous
framework is extended to a network of sensors in [19].

An algorithmic framework is put forth here that associates tar-
gets with sensors that acquire informative measurements about these
targets, and subsequently performs tracking using only these infor-
mative sensors. Existing association schemes [7, 9, 12, 18, 19, 26]
match measurements with targets across time and utilize probabilis-
tic models. Differently, the sensors-targets association task here is
relying only on the sensor measurements and no probabilistic mod-
els are adopted. Another common assumption present in existing
multi-target schemes, e.g., [7, 9, 12, 18, 19, 26], is that sensor mea-
surements contain information about just one target. Here sensors
may be sensing multiple targets at the same time among which one
of them is closer to the sensor than the rest.

Our approach relies on the fact that sensors which are positioned
close to the same target, acquire correlated measurements. Such cor-
relations induce a sparse (presence of many zeros) structure in the
sensor data covariance matrix. A pertinent framework is derived to
decompose the sensing covariance into sparse factors whose support
(position of the nonzero entries) will indicate subsets of sensors ob-
serving the same target. Different from [11, 15, 28], the matrix fac-
torization scheme developed here does not require a central fusion
center and does not impose structural requirements to the unknown
factors such as orthogonality and/or positivity of the factor entries.
Sparse covariance factorization is also discussed in [23] which fo-
cuses on stationary settings where the field sources/targets are im-
mobile, while linear data models are considered and are not appro-
priate for tracking. Here the framework in [23] is generalized in
nonlinear, highly dynamic and time-varying settings where sensors
acquire information about multiple moving targets.

2. PROBLEM FORMULATION

Consider an ad-hoc multi-sensor network having m sensors. Ev-
ery sensor can communicate with its single-hop neighboring sensors
which are within its range. The single-hop neighborhood for sensor
j will be denoted by Nj , while the SN is modeled as an undirected
graph with symmetric inter-sensor links. The connectivity informa-
tion of the SN is summarized by the m×m adjacency matrix E. Sen-
sors monitor a field on which a time-varying and unknown number
of moving targets is present. The targets are observed via measure-
ments xj(t) acquired at sensor j and time t = 0, 1, . . . The targets
are moving at different locations in the field affecting different parts
of the SN. A general setting is considered where new targets are
sensed at a given time, while other targets maybe becoming inactive.

The scalar measurement xj(t) adheres to the following model

xj(t) =
∑R

ρ=1
aρ(t)d

−2
j,ρ(t) + wj(t), j = 1, . . . ,m (1)
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where aρ(t) denotes the intensity of a signal emitted by the ρth tar-
get, while dj,ρ(t) is the distance between the ρth target and sensor
j at time t. R indicates the total number of different targets that
move through the field over the lifetime of the SN, while wj(t) is
zero-mean temporally white sensing noise with variance equal to
σ2
w. Note that (1) is formulated assuming that the targets act as

transmitters, while the signals emitted from different targets prop-
agate via free-space and are superimposed in the way described in
(1) (see e.g., [8, Ch. 2]). Each of the aρ(t) signals emitted by a
moving target can be the result of, e.g., a radar signal impinging on
the ρ target surface and then bouncing back. Thus, aρ(t) could be
viewed as the signal resulting after the radar signal has bounced back
from target ρ surface and assuming that each sensor will receive one
reflection of the bounced radar signal. It is also assumed that among
these summands in (1) only one has strong amplitude whereas the
rest are negligible. This pertains to a setting where only one target,
say the ρth target, is close to sensor j whereas the rest are sufficiently
far thus their impact is very small. This holds true when targets are
well separated in space, and is a more ‘relaxed’ version of the com-
mon assumption that sensor measurements in multi-target tracking
contain information about just one target [7,9,12,18,19,26]. The in-
tensity aρ(t) will be nonzero only for the interval for which a target
is sensed by the sensors, otherwise will be zero.

The distance term dj,ρ(t) is equal to ∥pj − pρ(t)∥, where ∥ · ∥
denotes the Euclidean norm, pj ∈ R2×1 is the fixed and available
position of sensor j, while pρ(t) := [pρ,x(t), pρ,y(t)]

T ∈ R2×1 de-
notes the unknown ρth target position in a 2-D plane. Each target,
say the ρth is characterized by a 4 × 1 state vector sρ(t) that con-
tains at a given time t its location pρ(t) and the velocity vρ(t) :=
[vρ,x(t), vρ,y(t)]

T , i.e., sρ(t) := [pT
ρ (t),v

T
ρ (t)]

T . The target states
evolve according to the following Markov model:

sρ(t+ 1) = Asρ(t) + uρ(t), (2)

where A is the 4 × 4 transition matrix, while uρ(t) denotes zero-
mean white Gaussian noise with covariance Σu. Matrices A and
Σu are given as (e.g., see [2])

A =

 1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 ,Σu = σ2
u

[
(δT )3

3
· I2 (δT )2

2
· I2

(δT )2

2
· I2 δT · I2

]

where δT is the sampling period, and σ2
u is a nonnegative constant

controlling the variance of the noise entries in uρ(t), while I2 de-
notes the 2× 2 identity matrix.

Stacking all sensor measurements in (1) on an m× 1 vector we
obtain the measurement model

xt = Dtat +wt, where at := [a1(t) a2(t) . . . aR(t)]
T , (3)

while Dt is a m × R matrix with entries Dt(j, ρ) = d−2
j,ρ(t) with

j = 1, . . . ,m and ρ = 1, . . . , R. The noise wt has covariance
Σw = σ2

wIm. Vector xt is used for notational purposes, and is
not actually stored in the system. Given that the entries of at are
uncorrelated, it follows that the data covariance matrix is

Σx,t = DtΣaD
T
t + σ2

wIm = D̄tD̄
T
t + σ2

wIm, (4)

where Σa is the diagonal covariance matrix of at, while D̄t :=

DtΣ
1/2
a . Among the R entries in at, there will be r(t) nonzero

entries corresponding to the active targets moving at the sensed field
at t. Here once a target becomes inactive (i.e. bρ(t) = 0) it remains
inactive.

The ρth column of Dt contains the distances of all sensors from
target ρ at time t. For sensors close to target ρth, the correspond-
ing distances, dj,ρ(t), will be relatively small, resulting relatively
large entries Dt(j, ρ) = d−2

j,ρ(t), compared to sensors that are fur-
ther away. Since targets at a given instant t are very localized and
close to a small percentage of sensors, many entries of any column,
say the ρth, in Dt are expected to be close to zero giving rise to an
approximately sparse matrix Dt (different from the stationary set-
ting in [23]).

It is of interest to locate where the strong-amplitude and small-
amplitude entries are located in the ρth column Dt,ρ: via which
we can identify which sensors are close and acquire informative
observations about a specific target, say the ρth. A spatio-temporal
data association framework will be designed here that allows sen-
sors to collaborate and determine which subsets of sensors ac-
quire informative measurements about the r(t) active targets at t.
Sparsity-regularization techniques to estimate Dt and decompose
it into sparse factors will be employed. The sensor-target associa-
tion framework proposed here will then be integrated with particle
filtering techniques to track accurately the targets’ position.

3. SPATIO-TEMPORAL TARGET-TO-SENSOR DATA
ASSOCIATION

The sparse sensor data covariance Σx,t is time-varying due to the
changing number of targets and their movements, while in practical
situations the ensemble covariance is not available. To this end the
covariance entries will be estimated using exponential weighing

Σ̂x,t = (1− γ)(1− γt+1)−1 ∑t
τ=0 γ

t−τ (xτ − x̄t)(xτ − x̄t)
T , (5)

where γ ∈ (0, 1) denotes a forgetting factor and

x̄t = (1− γ)(1− γt+1)−1 ∑t
τ=0 γ

t−τxτ , (6)
corresponds to an adaptive estimate for the data ensemble mean
which is also time-varying. The scaling (1 − γ)(1 − γt+1)−1 in
(5) and (6) is introduced to ensure that the time-varying covariance
and mean estimates Σ̂x,t and x̄t will be unbiased estimates of the
ensemble quantities Σx,t and E[xt] respectively, in a stationary
setting. In order to adhere to the single-hop connectivity constraints
summarized in the adjacency matrix E, each sensor j is responsible
for evaluating the ‘single-hop’ covariance entries Σ̂x,t(j, j

′) where
j′ ∈ Nj .

3.1. Sparsity-Based Covariance Decomposition

A standard least-squares based matrix factorization scheme would
minimize the Frobenius norm-based cost ∥Σ̂x,t − MtM

T
t −

σ2Im×m∥2F with respect to (wrt) the factor estimates in Mt ∈
Rm×r . However, such a formulation does not account for the nearly
sparse structure of D̄t. In fact it assumes that the number r of factors
(sensed targets) is available, while all covariance entries are avail-
able. The need for a framework that accounts for sparsity, unknown
number of targets and single-hop connectivity is apparent. To this
end, the following framework is put forth(

M̂t, {σ̂j}mj=1

)
:= arg min

Mt,{σj}mj=1

∥E⊙
(
Σ̂x,t −MtM

T
t (7)

−diag(σ2
1,t, . . . , σ

2
m,t)

)
∥2F +

L∑
ℓ=1

(λρ∥Mt,:ℓ∥1 + ϕ∥Mt,:ℓ∥2) ,

where ⊙ denotes the Hadamard operator (entry-wise matrix prod-
uct), σ2

j is the local noise variance estimate at sensor j, while L is an

4011



upper bound for the number of active sensed targets r(t) (L ≥ r(t))
and Mt,:ℓ denotes the ℓth column of Mt. Although the sensing
noise variance σ2

w is common across all sensors we introduce dif-
ferent noise variance estimates σ2

j,t to facilitate the development of a
decentralized iterative minimization technique for (7). Mt ∈ Rm×L

contains L columns that will estimate the sparse columns of D̄t.
Sensor j will be updating the jth row in Mt, namely Mt,j:

for j = 1, . . . ,m. The adjacency matrix E in (7) along with the
Hadamard operator allow only the available single-hop covariance
entries to be used in the minimization formulation. The first term in
(7) accounts for the structure in (4). The second term (norm-one) in
(7) is well known (see e.g., [28]) to induce sparsity in the columns of
Mt to account for the approximately sparse structure of D̄t, while
λρ denotes the nonnegative sparsity-controlling coefficient used to
induce zeros in factor M̂t,:ρ. The third term in (7), where ϕ ≥ 0,
promotes group sparsity among columns, see e.g., [29], and adjusts
the number of nonzero columns of M̂t to accurately represent Σ̂x,t.

3.2. Distributed Implementation

An iterative algorithm is proposed here to minimize the cost in (7)
derived using coordinate descent [3,25]. The cost in (7) is minimized
recursively wrt an entry of Mt or diag(σ2

1 , . . . , σ
2
m), while keeping

the remaining entries fixed. During one coordinate descent cycle
all the entries of Mt and diag(σ2

1,t, . . . , σ
2
m,t) are updated. Sensor

j is updating the entries {Mt(j, ℓ)}Lℓ=1 and σ2
j,t. Given the most

recent updates M̂k−1
t and {σ2

j,t,k−1} at the end of coordinate cycle
k−1, updates M̂k

t (j, ℓ) at sensor j can be formed by differentiating
(7) wrt Mt(j, ℓ) while fixing the rest of the minimization variables
to their most up-to-date values from cycle k − 1. It turns out that
during coordinate cycle k, the update M̂k

t (j, ℓ) can be obtained as
the value that gets the minimum possible cost in (7) (while fixing the
rest of the variables) among the candidate values: i) z = 0; ii) the
real positive roots of the third-degree polynomial

4z3 + 4
[∑

i∈Nj
[M̂k−1

t (i, ℓ)]2 − ζkt,Σ(j, j, ℓ) + 0.5ϕ
]
z

−
[
4
∑

i∈Nj
ζkt,Σ(j, µ, ℓ)M̂

k−1
t (i, ℓ)

]
+ λℓ = 0 (8)

and iii) the real negative roots of the third-degree polynomial

4z3 + 4
[∑

i∈Nj
[M̂k−1

t (µ, ℓ)]2 − ζkt,Σ(j, j, ℓ) + 0.5ϕ
]
z

−
[
4
∑

i∈Nj
ζkt,Σ(j, i, ℓ)M̂

k−1
t (i, ℓ)

]
− λℓ = 0 (9)

where

ζkt,Σ(j, i, ℓ) := Σ̂x,t(j, i)− δj,iσ̂
2
j,t,k−1

−
L∑

ℓ′=1,ℓ′ ̸=ℓ

M̂k−1
t (j, ℓ′)M̂k−1

t (i, ℓ′) (10)

while δj,i denotes the Kronecker delta, i.e., δj,i = 1 if j = i, and
δj,i = 0 if j ̸= i.

Further, the noise variance estimates across sensors can be up-
dated during cycle k at time instant t as

σ̂2
j,t,k = Σ̂x,t(j, j)− M̂k

t,j:(M̂
k
t,j:)

T , j = 1, . . . ,m. (11)

The roots of (8) and (9) can be found via companion matrices [10].
Sensor j evaluates the coefficients of the polynomials in (8) and (9)

by communicating only with its neighbors in Nj . In detail, sen-
sor j receives {M̂k−1

t (i, 1), . . . , M̂k−1
t (i, L)} and measurements

{xi(t)} from sensors i ∈ Nj to form Σ̂x,t(j, i) and ζkt,Σ(j, i, ℓ).
Similarly, it sends to its neighbors the L scalar updates for the jth
row of Mt, namely {M̂k−1

t (j, 1), . . . , M̂k−1
t (j, L)} and its current

measurement xj(t). Further, each sensor j can update the noise vari-
ance estimates σ̂2

j,t,k using only locally available information as can
be seen in (11). To facilitate a real-time implementation a small fixed
number, say κ, of coordinate cycles is applied per time t. Note that
the proposed scheme also involves constant updating of the single-
hop covariance entries Σ̂x,t(j, i) needed in ζkt,Σ(j, i, ℓ) to account
for the constantly changing statistical properties of the sensed field.
It can be shown that as k → ∞ the updates {M̂k−1

t converge at least
to a stationary point of (7). Further, the parameters {λℓ}Lℓ=1 can be
set using the strategy proposed in [23]. To end the iterative process
each sensor j proceeds to evaluate the Euclidean norm of the differ-
ence between two consecutive estimates, namely ∥M̂k−1

t,j: −M̂k
t,j:∥2,

found during iteration steps k and k − 1. Once the maximum norm
∥M̂k−1

t,j: − M̂k
t,j:∥2 is less than a threshold ϵ (in our tests is set as

5 · 10−3), then the updating process stops.
Once the nonzero sparse factors {M̂t,:ℓ}r̂(t)ℓ=1 are estimated,

where r̂(t) < L corresponds to the number of nonzero columns
of M̂t := M̂κ

t at t, their support (nonzero entries) can be used to
identify the sensors that sense a specific target at time instant t. In
that way sensor subsets Tℓt,t for ℓt = 1, . . . , r̂(t) can be identified
and used to track the different targets.

4. JOINT ASSOCIATION AND TRACKING

During a start-up stage each sensor acquires Ts measurements,
namely {xj(τ)}0τ=−(Ts−1). It is assumed that the sampling rate
is fast enough such that the present targets, say r(0) in number,
can be assumed essentially immobile. The Ts acquired data are
then used by the distributed sensor-target association framework
in Sec. 3 to initialize the sets of informative sensors {Tρ0

ℓ
,0}

r̂(0)
ℓ=1

where each ρ0ℓ ∈ {1, . . . , R} for ℓ = 1, . . . , r̂(0), and r̂(0) is the
estimated number of r(0) sensed targets at time t = 0 (number
of nonzero columns in M̂0). One sensor in each set Tρ0

ℓ
,0 is des-

ignated as a leading sensor Cρ0
ℓ
,0 which collects from all sensors

j ∈ Tρ0
ℓ
,0 their corresponding measurements xj(0) and their posi-

tion pj for j ∈ Tρ0
ℓ
,0 and ℓ = 1, . . . , r̂(0). During initialization the

leading sensor Cρ0
ℓ
,0 can be selected randomly among the sensors

in Tρ0
ℓ
,0. Then, for time t > 0 it will be described later on how

the leading sensors are selected. Each leading sensor Cρ0
ℓ
,0, for

ℓ = 1, . . . , r̂(0), then calculates the ‘average’ informative sensors’
position as p̂ρ0

ℓ
(0) =

∑
j∈T

ρ0
ℓ
,0
pj for ℓ = 1, . . . , r̂(0). Each lead-

ing sensor Cρ0
ℓ
,0 uses the average location p̂ρ0

ℓ
(0) to initialize the

standard particle filter recursions [6] corresponding to models (1)
and (2); and find a state estimate ŝρ0

ℓ
(0) for target ρ0ℓ using the in-

formative measurements xj(0), for j ∈ Tρ0
ℓ
,0 and ℓ = 1, . . . , r̂(0).

Suppose that at time t each leading sensor {Cρℓ,t} has available
state estimates ŝρℓ(t) for ℓ = 1, . . . , r̂(t). From ŝρℓ(t) the estimated
target position p̂ρℓ(t) can be extracted and it is utilized to select a
set of ‘candidate’ target-informative sensors, namely Jρℓ,t+1, for
target ρℓ. Specifically, the leading sensor Cρℓ,t transmits ŝρℓ(t) to
its single-hop neighbors, which will subsequently transmit to their
own neighbors and the estimate propagates in time. A sensor j that
receives ŝρℓ(t) will forward this estimate only to those neighbors in
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j′ ∈ Nj that are located within a radius Rs from the estimated target
location, i.e., ∥pj′ − ŝρℓ(t)∥2 ≤ Rs.

In each of the subsets Jρℓ,t+1 the targets-to-sensors association
scheme in Sec. 3 is employed to determine the target-informative
sensor groups Tρℓ,t+1 ⊆ Jρℓ,t+1 for each of the targets ρℓ at time
instant t+1. The radius Rs through which Jρℓ,t+1 are constructed is
up to our control, and the faster the target moves the larger Rs should
be set to guarantee that all target-informative sensors are included in
Jρℓ,t+1. Performing the target-to-sensor association algorithm in
different sensor subsets Jρℓ,t+1 of the SN facilitates tracking the
present targets, while it requires less computational and communi-
cation complexity than when applied in the whole SN.

The leading sensor Cρℓ,t+1 is chosen as that sensor in Tρℓ,t+1,
which is closest to the estimated position of the ρℓth target, i.e.,
Cρℓ,t+1 = argminj∈Tρℓ,t+1 ∥pj − p̂ρℓ(t)∥2. The process of elect-
ing a new leading sensor can take place among the sensors in Tρℓ,t+1

that can determine their distance from p̂ρℓ(t) and find which sensor
has the minimum in a distributed fashion, e.g., see [13]. The leading
sensor Cρℓ,t+1 then collects i) the corresponding Q state particles
and weights {siρℓ,t, w

i
ρℓ,t}

Q
i=1 from Cρℓ,t; and ii) the sensors mea-

surements xj(t+1) for j ∈ Tρℓ,t+1, namely the updated informative
sensor subset for target ρℓth at time instant t+ 1.

The leading sensor Cρℓ,t+1 proceeds to draw Q new state parti-
cles and update their corresponding weights as in [6]. Then, Cρℓ,t+1

forms the new state estimate ŝρℓ(t + 1) ≈ E[sρℓ(t + 1)|xTρ,0:t ]
using the PF updating recursions in [6] to find the estimated location
for target ρℓ at time instant t, namely p̂ρℓ(t + 1). The leading sen-
sor Cρℓ,t+1 transmits ŝρℓ(t+ 1) to its single-hop neighbors and the
process described earlier is repeated.

5. NUMERICAL TESTS

Next, we test the tracking performance of our novel method in a
setting where the number of targets can change in time. A number
of m = 120 sensors are placed randomly in the region of [0, 100]×
[0, 100]m2. The total number of targets is R = 12. The radius Rs

for determining the candidate informative sensors subsets Jρ,t is set
equal to Rs = 10. The forgetting factor is set as γ = 0.1. The
state noise variance is set as σ2

u = 0.1, while the measurement noise
variance is set to σ2

w = 0.1 (amounts to a sensing SNR of 10dB).
The target configuration [see Fig. 1 (top)] is set as follows: Tar-

gets ρ = 1, 2, 3 start moving at positions [35, 25], [40, 45], [20, 55]
and follow the dynamics in (2). In detail, targets ρ = 1, 3 move at a
speed of 2m/s across the x-axis, target ρ = 2 moves with a speed of
2m/s across the y-axis. Targets ρ = 1, 2, 3 move in the field for the
time interval [1, 15]s and then are not sensed anymore. In the inter-
val [15, 17]s no targets are present in the field. Then, targets ρ = 4, 5
start at positions [23, 40], [50, 75] and move according to same state
model followed by the first three for the time interval [17, 30]s but
with speeds −1.3m/s and −1.7m respectively across the x-axis.
Again no targets are present during [30, 32]s. Then, targets ρ = 6, 7
appear at initial positions [75, 35], [10, 30] and start moving for the
time interval [32, 45]s with a speed of 1.5m/s on the x-axis and
1.7m/s across the y-axis. Three new targets, namely ρ = 8, 9, 10,
show up at positions [40, 70], [40, 10], [60, 70] and move in the field
for the time interval [47, 60]s with different speed 1.4, 1.2, 1.6m/s
on both the y and x-axis. Finally, the last two targets ρ = 11, 12
start at positions [85, 25] and [48, 48] and move within the field for
the time interval [62, 72]s. Target ρ = 11 moves with −1.0m/s and
2.6m/s across x and y-axis, while target ρ = 12 with corresponding
x-axis and y-axis speeds of −0.7m/s and −2.5m/s, respectively.

Fig. 1 (top) depicts the true target trajectories (blue dashed

curves), along with the estimated trajectories (light green curves)
using our novel method. The blue stars correspond to the starting
position of the targets and the red stars denote the ending position.
Fig. 1 (bottom) depicts the average tracking root mean square error
(RMSE) corresponding to the tracking of the different targets present
in Fig. 1 (top). We compare our method with i) the standard particle
filtering, where instead of performing data association a 48× 1 aug-
mented state vector that contains all targets’ states is tracked; and ii)
the unscented Kalman filter (UKF) tracking scheme (e.g., see [14])
combined with the targets-to-sensors association scheme in Sec. 3.

Note that at the time intervals 15, 30, 45, 60s the average track-
ing RMSE is zero in Fig. 1 (bottom). It is initialized there because
during these time intervals no targets are detected in the field and
thus there is nothing to track and no corresponding tracking RMSE.
However, when targets are present, clearly our method achieves bet-
ter tracking performance compared to standard PF and the UKF
based methods. Our approach achieves a smaller RMSE for the
same number of particles (Q = 100) wrt standard PF since the for-
mer effectively associates targets with sensor measurements. UKF
performs worse since it just estimates the posterior mean and covari-
ance instead of tracking the posterior probability density function.
The probability of incorrect sensor-to-target association is 0.08.
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Fig. 1. (top) Tracking of multiple targets. (Bottom) Average tracking
RMSE versus time.

6. CONCLUDING REMARKS

A novel method performing distributed sensor-target association and
multi-target tracking was designed and tested in multi-sensor net-
works. Our approach is based on a novel blending of particle filter-
ing and sparsity-aware matrix factorization techniques. The target-
informative sensors are chosen online and their observations are used
for tracking. Numerical tests show that the proposed tracking frame-
work outperforms related approaches in tracking multiple targets.
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