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Abstract—In [1] we developed a new uncertainty measure
which incorporates Rényi entropy instead of Shannon entropy.
This new uncertainty measure was conjectured to be invariant
to the Rényi order ↵ > 0 for the case of the optimizer signals of
Hirschman Uncertainty (Picket Fence functions whose lengths are
a perfect square). In this paper, we prove this invariance, and test
whether this invariance is predictive in the problem of a simple
texture classification for digital images. In the preliminary results,
we find that it certainly influences the recognizer performance.
Specifically, we find that the recognition performance does not
depend significantly on the Rényi parameter ↵. We hope that
these results will be extended to other problems where Rényi
entropy is used.

Index Terms—Uncertainty, Entropy, Textural features, Classi-
fication

I. INTRODUCTION

Classically, the Heisenberg uncertainty relation, M x M p =
h

4⇡ [2], is based on the standard deviations M x and M p
that define the position x and moment p of a electron. This
relationship forms the backbone of modern physics, but in
and of itself is not useful when applied to probability distri-
butions, and more specifically to information theory and signal
processing. Here, approaches like Shannon, Rényi and Tsallis
entropy measures are used. Shannon introduced the notion
that the amount of uncertainty found in a given probability
distribution P = {p1, p2, p3, . . . , pn} is the amount of entropy
found in the distribution P . However, while the information
measures can be viewed as measures of uncertainty because
uncertainty is associated with missing information, their direct
use is not satisfactory because then we will ignore the spectral
information. The Hirschman Uncertainty [3] is defined by the
average of the Shannon entropies of a discrete-time signal
and its Fourier transform. The picket fence function defines
the optimal bases of the Hirschman uncertainty in [4]. To
explore the fundamental nature of Hirschman Uncertainty, we
extended Hirschman Uncertainty to include Rényi entropy [1]
and discrete fractional fourier transform [5].

II. HIRSCHMAN UNCERTAINTY PRINCIPLE

The discrete Hirschman Uncertainty measure Up [6] conveys
the compactness of a discrete-time signal in the sample-
frequency (phase) plane. It is well-known that for the con-
tinuous time, the only signals for which equality in the
Heisenberg Uncertainty holds are obtained from the Gaussian
2⇡

1
2 e

�t2

4
(t✏R), by applying translations, dilations, or mod-

ulations or multiplication by a complex number of magnitude
1. It is less well known that Heisenberg Uncertainty is ill-
posed for digital signals. The uncertainty measure obtained
by a naïve discretization of the continuous case Heisenberg
measure is, among many problems, not translation invariant (a
more complete list of problems can be found in [4]). The more
general Hirschman Uncertainty measure uses deterministic
entropies with respect to densities in time and frequency.

Formally, let D = {0, 1, 2, . . . , N � 1} and let H
N

denote
the Hilbert space of squences x : D ! C with squared norm

kxk22 =

N�1X

n=0

|x [n]|2

We also have the (discrete) Fourier transform

X [k] = Fx [n] =
1p
N

N�1X

n=0

x [n]Wnk

N

(1)

where W
N

= e�j

2⇡
N is the standard twiddle factor and F is

the defining Fourier matrix. This defines and isometry on H
N

with inverse given by

x [n] =
1p
N

N�1X

k=0

X [k]W�nk

N

(2)

By the digital phase plane we mean the set of all points
(n, k) 2 D ⇥D.

Definition 1. Let x 2 H
N

with kxk2 = 1. The Shannon
Entropy is

H(x) = �
N�1X

n=0

| x [n] |2 ln(| x [n] | 2) (3)
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A general Uncertainty measure is created by considering
the weighted average

U
p

(x) = pH(x) + (1� p)H(Fx), p 2 [0, 1]

The parameter p allows us to trade-off concentration in time
and frequency. In the extreme cases, the Uncertainty is either
ignoring the frequency localization (when p = 1) or the time
localization (when p = 0). Strictly speaking, we have

Definition 2. Let x 2 H
N

with kxk2 = 1. The Hirschman
Uncertainty is

U 1
2
(x) =

1

2

H(x) +
1

2

H(Fx) (4)

and so the localization in both time and frequency is consid-
ered of equal interest. Before describing the minimizers of (4),
we define periodization:

For N = KL, the periodization of v 2 Ck is defined as
x [sK + n] = (1/

p
L)v [n] for 0  s  L � 1 and 0  n 

K � 1. We refer to the sequence v 2 Ck given by v [0] =
1, v [1] = 0, · · · v [K � 1] = 0, as the Kronecker delta or
impulse (unit sample) sequence, without specifying the signal
length K. We proved the following theorem in [7]:

Theorem 3. The only sequences x 2 Ck, with kxk2 = 1 ,
for which U 1

2
(x) is minimal are obtained from the Kronecker

delta sequence by applying any composition of periodization,
translation, modulation, the DFT, and multiplication by a
complex number of unit magnitude.

III. HIRSCHMAN-RÉNYI UNCERTAINTY

In [1] we extended the Hirschman Uncertainty to include
Rényi entropy. To develop this Hirschman-Rényi Uncertainty,
we first recall the Rényi entropy.

A. Rényi entropy

Rényi, or alpha-order, entropy (denoted as ↵-order), is

Definition 4. Let u 2 H
N

with kuk2 = 1. The Rényi Entropy
is

H↵

(u) =
1

1� ↵
log

N�1X

n=0

⇣
|u [n]|2

⌘
↵

, ↵ 2 [0,1) (5)

In the special case where ↵ = 1, the Rényi entropy is
identically the Shannon entropy.

lim

↵!1
H↵

(u) = H1
(u) = H(u) = �

NX

n=0

| u [n] |2 ln(| u [n] |)2

lim

↵!0
H↵

(u) = H0
(u) = logN = Hmax

lim

↵!1
H↵

(u) = H1
(u) = � log[max

i

(| u(n) |2)]

For any ↵ > 0, the Rényi entropy H↵

(u) is non-negative
and decreasing function of ↵ ( i.e. for ↵1 < ↵2 , H↵2

(u) 6
H↵1

(u) for all u) decaying from H0
(u) to H1.

B. New Uncertainty Measure

Combining the Rényi entropy with the Hirschman Uncer-
tainty, the following definition seems reasonable:

Definition 5. Let u 2 H
N

with kuk2 = 1. The Hirschman-
Rényi Uncertainty is

U↵

1
2
(u) =

1

2

H↵

(u) +
1

2

H↵

(Fu) (6)

The picket fence signal is a minimizer of the Hirschman
Uncertainty [8]. This signal and its Fourier transform as
computed in Eq. (1) have the same appearance, and so their
Shannon entropy given in Eq. (3) and their Rényi entropy
given in Eq. (5) are also the same.

Theorem 6. The Hirschman-Rényi Uncertainty of Eq. (6) is
invariant to the Rényi order ↵ > 0 for a picket fence signal
whose length is a perfect square.

U↵

1
2
(u) = U1

1
2
(u) = U1

1
2
(u) = log K = constant

Proof: For the picket fence, the signal and its Fourier
transform are the same i.e. u = Fu. Therefore, H↵

(u) =

H↵

(Fu). We must ensure that only the non-zero values
(probabilities, so to speak) are included. Considering the picket
fence signal u has sample length N = K2 and has K non-zero
samples,

lim

↵!1
H↵

(u) = H1
(u) = H(u) = � log

1

K
= log K

lim

↵!1
H↵

(u) = H1
(u) = � log[max

i

(| u(n) |2)]

= � log

1

K
= logK

Therefore,

U1
1
2
(u) =

1

2

logK +

1

2

logK = logK

U1
1
2
(u) =

1

2

logK +

1

2

logK = logK

Fig. 1 displays the invariance of the Hirschman-Rényi Un-
certainty to Rényi order ↵ > 0 for a picket fence signal
with length N = 25. The Hirschman Uncertainty is shown
as the star at ↵ = 1 (where Rényi and Shannon entropies
are identical). At ↵ = 0, since Rényi entropy H↵

(u) is given
by log N (where N represents the length of the signal), the
Hirschman-Rényi uncertainty U↵

1
2

obtained from eq. (6) is
also reduced to log N (following convention 0

0
= 1 while

caluclating). Therefore, we can summarize two main points in
case of picket fence signal:

1) At ↵ = 0, Hirschman-Rényi uncertainty U↵

1
2
= log N .

2) For ↵ > 0, U↵

1
2

is constant for all N .
Consider the case of the N = 64 point Identity (Kronecker
delta) function shown in Fig.2 (repeated from [7] for easy
reference). The Identity function is the solid curve, slanting
down from left to right, with a Concentration of about 4.1
nits for extreme time localization and 0 nits for extreme
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Figure 1. Hirschman Uncertainty and Hirschman-Rényi Uncertainty for the
picket fence signal N=25

frequency localization. The concentration parameter p pro-
vides the analyst a mechanism to examine a signal’s time or
frequency characteristics as appropriate. Again, the Hirschman
uncertainty is specifically for p =

1
2 . The optimal signal (in

this case, a 64-point picket fence signal) is shown as the
constant 2.07 nit dashed line.

Figure 2. Concentration vs. p for various signals, N = 64 (identity(-),
gaussian (o), Haar (*), cosine (+), picket fence(–))[7]
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Figure 3. Hirschman Uncertainty & Hirschman-Rényi Uncertainty for discrete
signals N = 64

Fig. 3 shows the Hirschman Uncertainty & Hirschman-
Rényi Uncertainty for various discrete signals with N = 64.
It is noted that at ↵ = 0, for all discrete signals Hirschman-
Rényi Uncertainty is equal to logN , i.e. it only depends on
the length of the signal. The Hirschman-Rényi Uncertainty
remains constant for the picket fence signal and for all other
signals it decays from ↵ = 0 to ↵ = 7. For ↵ > 1.5, there is
very little change in the uncertainty of signals whereas from
↵ = 0�1.5, the change in uncertainty are noticeable with the
change in ↵ values. Also, the picket fence has the minimum
uncertainty for ↵ < 1.7.

Theorem 7. Let u 2 H
N

with kuk2 = 1. For ↵ ✏ (0,1) ,

Hirschman-Rényi Uncertainty for discrete signals (other than
picket fence signal) has the following limiting equation

log N � U↵

1
2
(u)

and

U↵

1
2
(u) >

1

2

[(� log(max
i

�| u(n) |2�) +
�� log(max

i

�| û(n) |2��]
where û = Fu, fourier transform of the signal u.

Proof: Considering any discrete signal u 2 H
N

with
kuk2 = 1, H0

(u) = logN = Hmax and H1
(u) =

� log[max
i

(| u(n) |2)] . Rényi entropy H↵

(u) is a decreasing
function of ↵, decaying from H0

(u) to H1. Subsituting the
values of H0

(u) and H1 in eq. 6, we get the upper and lower
bounds of U↵

1
2
(u) for the discrete signals.

From fig. 2 and fig. 3 it is evident that the picket fence
signals are invariant to both concentration trade-off parameter
p and the Rényi order ↵.

IV. CLASSIFICATION BASED ON HARALICK TEXTURAL
FEATURES

Image texture can be defined as a function of the spatial
variation in pixel intensities [9]. Texture classification involves
two major steps: 1) feature extraction and 2) classification. In
this paper, we calculate 12 textural features (energy, entropy,
contrast, correlation, variance, sum average, sum variance, sum
entropy, difference variance, difference entropy, information
measures of correlation) proposed by Haralick [10] for image
classification. This is a classic texture recognition paper. We
have conducted the preliminary experiment using five textures
(D9, D12, D19, D68, D112) shown in figure 4 from the Bro-
datz texture database. Haralick suggested the use of the Gray
Level Co-occurence Matrix (GLCM) for extracting textural
features. GLCM is a MxM square matrix where M is the
number of gray levels in the image. Element (i,j) of the GLCM
matrix is the number of occurences of the pair of gray levels
i and j which are d distance apart. Four GLCM matrices are
calculated in 4 different directions of adjacency ( 00, 450, 900,
1350). The Forward Subset Selection (FSS) is used to reduce
the dimentionality of the feature set and a subset of the 12
textural features is used for the final classification process. The
subset of the features obtained using FSS include: correlation,
energy, entropy, sum entropy and information measures of
correlation.

Algorithm
Step1: Create 100 32x32 subimages from the original

512x512 images from the Brodatz database. All the
images are histogram equalized for contrast adjust-
ment. Then, calculate the GLCMs in 4 different
directions of adjacency ( 00, 450, 900, 1350).

Step2: Feature extraction: Obtain a set of 4 values for each
of the 12 textural features calculated from 4 GCLMs
in different directions. The mean of these 12 features,
averaged over 4 values comprise of the feature set.

Step3: Repeat the steps 1 and 2 for each texture class.
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Step4: Feature Selection: The feature dimentionality is re-
duced using forward subset selection (FSS) and a
subset of features is obtained. This subset of features
is used for the classification.

Step5: Nearest Neigbor Classifier: A 500x6 feature dataset
is used to train the classifier while a 500x6 test
dataset is then input to the trained classifier for the
classification purpose.

Step6: The whole classification process (steps 1-5) is re-
peated 5 times on different sets of data from each
texture class and then averaged to get the classifica-
tion rate for that class.

(a) D9 Grass (b) D12 Bark (c) D19 Woolen cloth

(d) D68 Wood grain (e) D112 Plastic bubbles

Figure 4. Five textures used in the texture classification experiment

The original images in the Brodatz database are 512x512
pixels in size. 100 32x32 images were obtained from these
512x512 original images in each of the 5 texture classes. In
each texture class, 100 images are used in training, while an
additional 100 are used as test images. The final training set
consist of 500 subimages and the test set consists of 500
subimages. The nearest neighbor classifier is used for the
classfication using the Euclidean distance measure. A 500x6
feature dataset is used for training the classifier and then
another 500x6 test dataset is input to the trained classifier
for final classification. The classification results are shown in
fig. 5. First the classification experiment is conducted with
Shannon entropy (Rényi entropy with ↵ = 1) as one of the
features in the feature set. Then, Rényi entropy with different
values of ↵ replace the Shannon entropy as one of the 6
features in the feature subset. The classification is carried out
on 5 different data sets in each texture class and the average
of 5 classifications is shown in fig. 5(f).

The classification varies by 1% - 5% in each texture
class with variation in ↵ values from 0.1 to 1 whereas the
classification rate drops for the larger values of ↵ in most of
the texture classes. The classification rates with Rényi entropy
as one of the features with ↵  1 are comparable or better than
Shannon entropy as one of the features in the feature set. Table
I shows the average classification rate carried on 5 different
dataset in each texture class. If we eliminate entropy from the
feature set, we find the average classfication rate drops from
77.08% to 76.84%. The drop in the classification rate is only
0.24%.

V. CONCLUSIONS

The Hirschman-Rényi Uncertainty is defined as a gener-
alization of the previously defined Hirschman Uncertainty.
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Figure 5. Classification rate using Nearest Neighbor Classifier with euclidean
distance measures for different texture classes (a) Texture D9 (b) Texture D12
(c) Texture D19 (d) Texture D68 (e) Texture D112 (f) Average classification
rate for 5 texture classes

Table I
RESULTS OF CLASSIFICATION ON 5 CLASSES OF TEXTURE

Texture Classification%
with entropy

Classification%
without entropy

D9 71.4 68
D12 71.8 73.4
D19 77 77.2
D68 86.4 90.8
D112 78.8 74.8

Avg. Classification 77.08% 76.84%

The Uncertainty of the minimizers, the picket fence signal,
is not only invariant to concentration trade-off parameter
p, but also to the Rényi order ↵. We perform a classical
texture recognition experiement, and find that the recognition
performance follows directly as our developed Hirschman-
Rényi Uncertainty theory suggests. Specifically, we find that
the Rényi entropy parameter ↵ in the commonly used range
barely, if at all, impacts classification performance; and using
large values of ↵ only decreases classification performance.
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