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ABSTRACT

From turbine control systems at wind farms to extreme
weather early-warning systems, short-term probabilistic
wind speed forecasts are seeing widespread use in indus-
trial applications. Successful modern forecast methods, often
Weibull-based, have been shown to be extremely sensitive
to even minor changes in location. We contend that this
lack of robustness stems not from model selection, but rather
the parameter estimation methods used, and propose a new
proper scoring rule to be dynamically minimized. Tested
on a weather array spanning the islands of Japan, we verify
both superior short-term forecasting performance and model
fit of the proposed method over all standard references, and
empirically confirm the desired location robustness.

Index Terms— Robust wind speed forecasting, density
forecasting, proper scoring rule

1. INTRODUCTION

Wind speeds near the surface of the earth are inherently inter-
mittent. Demand for reliable forecasts and stochastic wind
information exists in numerous applications, including ex-
treme weather early-warning systems [1, 2], supply planning
for power grids using wind energy [3], and predictive con-
trol systems for optimizing turbine power output [4] or re-
ducing turbine vibration [5]. Depending on the task, the re-
quired forecast “horizon” length may differ; for longer-term
forecasts between 12–72 hours, numerical models capturing
the dynamics of mesoscale wind flows have proven success-
ful [6], using statistical post-processing to attempt spatial lo-
calization [7]. At shorter time scales, especially shorter than
6 hours, data requirements and computational cost become
prohibitive, and statistical models not constrained to physical
processes are the standard approach for spatially local short-
term forecasts [8].

The research problem in this study concerns the robust-
ness of statistical wind speed models (cf. [9]) to forecast lo-
cation in the 1–5 hour case. Robustness to location naturally
implies robustness to anemometer height and altitude, pres-
ence of nearby buildings and obstructions, as well as gradi-

ent and roughness of surrounding terrain. If such informa-
tion is available, it can be effectively reflected in probabilistic
wind speed models [10], though this is clearly a site-specific
fine-tuning. Such models naturally do not generalize well
off-site, but even in the case of very simple models without
such fine-tuning, strong performance at one location by no
means guarantees the performance at nearby sites [11]. The
ad hoc manner in which methods in the literature have been
proposed leads to two major problems. First, in general suffi-
cient historical data and detailed terrain information cannot be
assumed available, rendering key assumptions in past models
invalid. Second, since successful models end up differing fun-
damentally site-to-site, a cross-location comparison of model
performance becomes difficult, and insights into the stochas-
tic character of wind speed are drastically limited.

In our study, we contend that a key factor limiting fore-
caster robustness is the method of parameter estimation used
to generate each forecast, rather than the specifics of the
model used. Here we propose a novel estimation method, us-
ing a new parsimonious metric to be dynamically minimized,
which requires only the first and second moments of the pre-
dictive distribution, and has desirable theoretical properties
as a cost function (section 3). Using observational data from
the Japan Meteorological Agency (section 2), we verify both
the location robustness of our method, and the location sen-
sitivity of standard alternative methods, over sites nationwide
capturing a variety of geographic and climatic conditions.
The results are applicable for the highly general case of a
Weibull-based forecaster with no fine-tuning. Key experi-
mental results and subsequent analysis are given in section 4,
and discussion with a look ahead in section 5 concludes the
paper.

2. DATA AND EXPERIMENT INFORMATION

The data to be used in this research comes from the Japan Me-
teorological Agency (JMA) observation network AMeDAS,
whose historical data is made public. Having aggregated the
observations from over 1100 sites on the network, for this
study we limit the focus to “target” sites (i.e., at locations at
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which to forecast) with both reasonably high average wind
speeds as well as sufficiently long sets of contiguous data
without missing or uncertain values over calendar year 2012.
The minimum average annual wind speed allowed is 2.5m/s,
and of the 52704 10-minute observations, we set a raw maxi-
mum missing value rate at 0.1%, and in addition require con-
tiguous data free of missing values no shorter than 250 days
worth of measurements.

The resulting 44 high-quality data sites (Fig. 1) span a
large geographical and climatic range, from Okinawa and
Kyushu through central Honshu, and up to Hokkaido. Half of
these sites had contiguous sequences of length 52704 (zero
missing values), and the average length was 46666, or roughly
325 days. In this study we do not explicitly look at robustness
to seasonal conditions, and as the time-series are of sufficient
length and forecasts are carried out independently for any
given site, every site need not cover precisely the same time
period.

Fig. 1. AMeDAS network with filtered targets denoted by
large symbols. Shapes denote annual average temperature
(C): circles are < 8, diamonds are [8,18), triangles are ≥ 18
over 2012–2013. The green-red colour gradient represents
normalized standard deviation of wind speed (m/s), with min-
imum of 1.5 and maximum 3.8.

3. PREDICTIVE PARAMETER ESTIMATION
METHOD

We now elucidate the details of the problem and our pro-
posed solution. At present time t, our task is to forecast
wind speed xt+k for forecast horizon k > 0. Assuming
observations Xt = (xt,1, . . . , xt,m), where m ≥ 1 and the
index m includes both wind speeds at remote sites and other
local variables, we model xt+k ∼ F (θ(Xt; w)). Condi-
tional on data Xt, determining w specifies the parametric
model F . Previous studies tend to focus on finding a par-
ticularly good F which may take the form of a truncated
Normal, log-Normal, Gamma, Rayleigh, or most commonly
a (uni/bi-modal) Weibull distribution [12], and parameter
model θ(·; w). In these works, the method of estimating w

is in most cases determined by computational convenience
dependent on the model. If site-specific assumptions (logit-
Normal, etc.) allow it, recursive methods typically minimiz-
ing squared forecast error (e.g., Kalman filters) [8] may be
utilized, though in the case of the task for general locations,
log likelihood [13] and continuous ranked probability score
(CRPS) [2, 14] can be considered wind industry standards.

We take the approach of starting with the task of finding
an appropriate metric to minimize, and then evaluating it for
important model classes. Consider a measurable space (Ω,A)
where A is a σ-algebra of subsets of Ω. Let µ : A → R
be a measure and P = {µ : µ(Ω) = 1}. Then any non-
empty P ⊂ P is a model, and for any f : Ω → R, and
f± ..= (|f | ± f)/2, if we simply require that one or more of
f+, f− be integrable with respect to every P ∈ P , then any
such f is called P-quasi-integrable [15]. Given a model P
then, we call a function L : P × Ω → R a cost function if it
is P-quasi-integrable. We seek a metric which is compatible
with a large class P and has nice theoretical qualities as a cost
function. We say that if

EQ[L(Q,ω)] ≤ EQ[L(P, ω)], ∀P,Q ∈ P, (1)

where of course ω ∼ Q, then L is proper with respect to P .
Strict propriety holds if equality in (1) holds ⇐⇒ P = Q.
For probability measures on Ω = Rn, let µP denote the mean
vector, and VP the covariance (or dispersion) matrix of some
P ∈ P . Our proposed metric is for the n = 1 case, and is
given as

J (P, ω) =
(ω − µP )2

VP
+ log(VP ). (2)

Clearly we only require from P that its first and second mo-
ments are finite. Next we show the propriety of this metric
following an argument in the spirit of [16].

We consider the case of general n ≥ 1 here. Let S+n be
the set of positive definite n× n symmetric matrices on R. If
Pn = {P : VP ∈ S+n }, for λ ∈ [0, 1], standard integration
properties give us for R = λP + (1−λ)Q where P,Q ∈ Pn,
that CovR[i, j] = λCovP [i, j] + (1 − λ)CovQ[i, j] that is
VR = λVP + (1− λ)VQ. Positive definiteness of VR follows
immediately from VP ,VQ ∈ S+n , and thus Pn is convex.

Define K : S+n → R by K(V) ..= log(det V). Basic re-
sults for convex functions (cf. [17]) are used as follows. Note
the epigraph of−K is clearly non-empty and by positive def-
initeness the argument passed to the log will be positive, and
as such −K is a proper convex function. By theorem 6.4 of
[17], one can easily confirm any α > 0 is in the relative in-
terior of dom(log) = R+. Thus using the natural extension
of theorem 23.4 [17] from vectors to square matrices, and the
differentiability of K, we have for W ∈ S+n

K(V) ≤ K(W) + tr (∂WK(W)(V−W)) , (3)

for all V ∈ S+n . This follows from using the subgradient in-
equality for convex −K, and homogeneity of the derivative
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to switch the inequality direction into the supergradient case.
For some P ∈ Pn, if we define a metric

M(P,ω) = (ω − µP )TV−1
P (ω − µP )

+K(VP )− tr(∂WK(W)VP )

it is straightforward to confirm for Q ∈ P

EQ[M(P, ω)] = (µQ − µP )TV−1
P (µQ − µP )

+K(VP ) + tr(V−1
P (VQ − VP )),

as ∂WK(W) = (W−1)T = W−1 by symmetry (cf. [18]).
Comparison of the eigenvalues of VP with its inverse give
positive semi-definiteness of V−1

P , and thus using the inequal-
ity (3) it follows that

EQ[M(Q,ω)] = K(VQ) ≤ EQ[M(P, ω)].

This is precisely the propriety of metric M, and since
tr(V−1

P VP ) = n, this clearly implies that (1) holds for
J (P, ω) on Pn, namely as the special case of this more
general result where n = 1. We thus have propriety of J for
all distributions with first and second moments defined, and
strict propriety may be shown for distributions characterized
by their first two moments. The utility of (1) is clear, given
observations Xt, as by the LLN for N large enough we need
only minimize

∑N−1
i=0 J (F (θt−i), xt+k−i)/N .

As noted above, applicability of the metric to the Weibull
distribution is an important requirement. For a Weibull with
shape κ(wκ) and scale λ(wλ) denoted W (λ, κ), we see

J (W,ω) =
(ω − λΓ1)2

λ2(Γ2 − Γ2
1)

+ 2 log(λ) + log(Γ2 − Γ2
1),

where Γi ..= Γ(1 + i/κ). The gradient is readily obtained,
and for parameter initialization in the case of κ(wκ), λ(wλ)
being linear combinations of input features, we initialize the
two intercept terms by a basic moment method, in which we
seek the root of

f(κ) =

√
Γ2 − Γ2

1

Γ1
− σ̂N
xN

and use κ̂ to solve λ = xN/Γ1. The results motivating this
initializer come from [19]. The remaining parameters are uni-
formly set to small positive values. We may then use fast
quasi-Newton optimizers such as the BFGS method as imple-
mented in R [20].

4. EXPERIMENTAL RESULTS AND ANALYSIS

Our goal here is to make a direct comparison of compet-
ing parameter estimation methods, leaving the model fixed
for each forecasting task, and to evaluate their robustness to
location-dependent factors, across all time horizons of inter-
est (1–5h). We fix the models at time t to W (wTλ xt,l, κt),
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Fig. 2. RMSE (top) and R2 (bottom) at each site for 5h fore-
cast. Lines denote averages taken over sites per method.

where xt,l = (1, xt, . . . , xt−l). The order of the AR model is
set to l = k + 3, where k = 1, . . . , 5. Reference probabilistic
methods use this model and negative log likelihood (NLL) or
CRPS (cf. [21]) for parameter estimation. Persistence (PER),
a deterministic reference, is simply a random walk forecast,
x̂t+k = xt. Spatial models capturing observations at sur-
rounding sites have been shown to be effective for poten-
tially fine-tuning more basic models [21], though inclusion of
such site-dependent information will dilute any conclusions
regarding location robustness of estimation methods, and thus
we use the benchmark model as stated. Several parameter ini-
tializers were used, including the Newby moment approach
[19], fixed values (at 1), random values (1+|N (0, 0.25)|), past
values (at t use estimates from t−1), and ML estimates for the
intercept terms, and the best-performing results (by forecast
error) were used as references.

The task is carried out at each site (Fig. 1) and each hori-
zon 1–5h separately, with no cross-referencing of forecasts.
Window length N is fixed at 15 days worth of observations.
Standard model selection algorithms (AIC/BIC, KL-IC, etc.)
can be used to automate this by-site. Beginning with Fig. 2,
we see forecast accuracy and model fit R2 (cf. [12]) over all
the sites at the 5 hour horizon, though as we will see, the
same trends hold at all horizons. Clearly models using the
proposed estimation method performed far better; in fact, at
all horizons the output is as good or better than persistence
on average, even with such simple models free of fine-tuning.
Strong calibration is further reinforced by the PIT histograms
given in Fig. 3, where the proposed method is far more uni-
form than the under-dispersed rivals.

Next we look more explicitly at the location robustness.
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Fig. 3. Histogram of F (xt+k; θ̂t) at four randomly selected
sites for 5h task; each column denotes a method.

In Table 1, we have the standard deviation of several metrics,
taken over all the test sites, at the shortest and longest hori-
zons. Volatility difference is simply the difference in sam-
ple variance between the generated point forecasts and the
true observations. The proposed estimation method results
in notably smaller variance over sites, particularly in accu-
racy metrics, providing perhaps the clearest indicator of su-
perior location robustness. Related measurements in Fig. 4
look at RMSE as a function of site wind speed and temper-
ature. First, we note that the reference performance drops at
windier sites, while under the proposed method the change is
minimal. As well, the rate of increase in error as the horizon
length increases is slower. We see that the references tend to
be particularly sensitive to colder sites, whereas the proposed
approach sees minimal variability. Such trends were observed
for error as a function of anemometer height, and across the
board for MAE and R2 as well.

5. DISCUSSION AND CONCLUSIONS

In this study we proposed a new method for parameter esti-
mation in short-term wind speed forecasting, and verified the
desired robustness to location empirically over a large obser-
vation array. This robustness applies to both forecast accuracy
and model fit, and was found to outperform strong standard
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Fig. 4. Forecast accuracy as a function of average annual wind
speed. Blue-red gradient indicates horizons 1–5h.

RMSE MAE Vol diff. R2

NNL 0.502 0.415 0.289 0.085
CRPS 0.280 0.219 0.172 0.051
Prop. 0.168 0.126 0.109 0.045

NNL 0.702 0.617 0.369 0.094
CRPS 0.619 0.529 0.330 0.092
Prop. 0.319 0.243 0.221 0.074

Table 1. Standard deviation of each metric, taken over all
sites, by method. First three rows for 1h, latter for 5h task.

references. The experimental results and their interpretation
are clear, but why does the proposed method succeed? The
first numerator is a proxy for forecast error, and variance in
the denominator prevents “overconfident” forecasts. On the
other hand, the log variance term ensures that density is not
over-dispersed, and in practice works to balance point fore-
cast accuracy and long-run model fit. MLE fits a joint distri-
bution under independence assumptions, and CRPS a distri-
bution function; depending on the model both may not opti-
mize accuracy, or be without a mechanism to stop overfitting
on the sample window.

Future lines of work will involve verification of the perfor-
mance seen here over remaining distributions of interest, and
subsequently to investigate whether analogous results can be
found for site-adaptive model selection algorithms. As well,
quantitative investigation of the scalability of candidate esti-
mation methods to high model complexity or very short hori-
zons (< 1min), may lead to beneficial new insights.
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