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ABSTRACT
In this paper, we consider the problem of multi-parameter es-
timation in the presence of compound Gaussian clutter for
cognitive radar using the variational Bayesian approach. The
main advantage of variational Bayesian is that the estimation
of multi-variate parameters is decomposed to multiple esti-
mation of univariate parameters, thus enabling analytically
tractable approximations. Numerical tests demonstrate that
the proposed approach leads to improved estimation accuracy
than the expectation maximization (EM) method, particularly
in the case of non-Gaussian nonlinear models and a small
sample size.

Index Terms— Variational Bayesian, compound Gaus-
sian clutter, cognitive radar

1. INTRODUCTION

Cognitive radar has been proposed as a fully adaptive radar
transmission and reception system in [1]. In cognitive radar,
both the transmitter and the receiver parameters are estimated
and updated by learning from the unknown environment,
forming a belief on what is learned, and propagating this
belief by Bayesian inference. From the parameter estimation
perspective, the Bayesian approach enables inclusion of prior
information (knowledge) of radar target and clutter by esti-
mating the posterior density of the unknown parameters. The
estimation is optimal in the sense of minimizing the Bayesian
mean squared error (MSE). Typically, the full joint proba-
bility density function (pdf) of all the parameters of interest
including the nuisance parameters is considered. However,
in the case of high-dimensional multi-variate integration of
Bayesian posterior density, the calculation of the posterior
pdf and its marginal can be computationally prohibitive and
tractable analytical solutions are often not available. Fur-
thermore, the estimation accuracy is directly related to the
number of data samples in the Bayesian estimator. How-
ever, in many radar applications, the number of available
data samples is limited. These computational challenges and
limitations must be addressed to develop cognitive radar.

In [2], we proposed a variational Bayesian (VB) based
method for parameter estimation and waveform design where
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a single parameter estimation problem is considered. Vari-
ational Bayesian aims to minimize free energy (FE) [3, 2],
which is equivalent to minimizing the Kullback-Liebler di-
vergence between the true density and an approximation den-
sity. As a result of this functional optimization for density
estimation, the marginal VB posterior density has an explicit
functional structure, thus leading to closed form solutions [4].
This paper extends our prior work in [2] to multiple param-
eter estimation in the context of cognitive radar. In adaptive
radar detection, estimating the clutter covariance matrix is a
very important task since the detection performance depends
directly on the accuracy of the estimate. For example, in high-
resolution and low-grazing-angle radar, only a small sea sur-
face area is illuminated by a narrow radar beam. The sea clut-
ter due to reflection from the small patch of sea surface is ran-
dom and non-stationary [5], which is commonly modeled as
a compound-Gaussian distribution to characterize its heavy-
tailed clutter distributions [6, 7]. Hence, the Bayesian estima-
tor must consider a multi-parameter estimation problem by
which the parameters in the compound-Gaussian model, the
radar target response, as well as other nuisance parameters
are estimated. In this paper, we compare the performance of
the proposed VB method with the expectation-maximization
(EM) algorithm. In the EM method, expectations of suffi-
cient statistics are computed with respect to the posterior den-
sity of hidden variables and then used to iteratively estimate
the unknown parameters by the maximum likelihood princi-
ple [8, 9]. We show in this paper that the variational algo-
rithms outperform the EM method particularly when estimat-
ing parameters that follow non-Gaussian nonlinear models in
Bayesian inference. Hence, the proposed variational algo-
rithms provide appealing computational advantages for cog-
nitive radar.

2. PROBLEM FORMULATION

2.1. Radar Signal Model

The compound clutter model is a product of two random pro-
cesses [9, 6, 7],

ψt =
√
utwt (1)

where the speckle wt characterizing the local scattering and
is modeled as a zero mean complex Gaussian (ZMCG) pro-
cess wt ∼ CN (0, σ2). The component ut is a slow changing
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process termed texture that follows an inverse Gamma distri-
bution ut ∼ Γ−1(α), where the pdf of ut is

p(ut;α) =
αα

Γ(α)
u−α−1
t exp

(
− α

ut

)
(2)

The model (1) is referred to as K-clutter [10, 5] and the pa-
rameter α is known as the Nakagami parameter [11]. Next,
we assume the radar transmits a waveform Φt and the elec-
tromagnetic (EM) energy hits a target with a complex ampli-
tude response x. The reflected EM energy is intercepted by
the radar receiver. The radar signal model that includes the
clutter from (1) is given by

yt = Φtx+ ψt, t = 1, 2, · · · , N (3)

The conditional probabilistic model of the measurements is a
complex Gaussian distribution given by

yt|ut, x, σ2 ∼ CN (Φtx, utσ
2) (4)

2.2. Problem of Parameter Estimation

The complete hierarchical stochastic model, i.e., the joint
probability density function of the measurements, hidden
variables, and the unknown parameters at time t is given by

p(yt, ut, x, σ2, α; Φt) = p(yt|ut, x, σ2; Φt) (5)

p0(x, σ
2)p(ut|α)p0(α)

where p(yt|ut, x, σ2; Φt) is the conditional density given in
(4). The probabilistic model of texture p(ut|a) is given by
(2). p0(x, σ

2) and p0(α) are prior densities of (x, σ2) and α,
respectively. Initially, the unknown parameter vector is given
by [x, σ2, α]. When we use a variational estimation method,
the covariance estimate depends on the current estimate of
α. However, initially this mutual dependence of estimates in-
troduces a multiplicative error in the estimates of these two
parameters. To correct this error, we use the technique of co-
variance adjustment and introduce an additional parameter λ
in the texture model (2) by redefining the covariance in terms
of an adjusted covariance σ2

a, [9], i.e., the relation between the
actual covariance and the adjusted covariance is σ2 = σ2

a/λ.
Hence, the adjusted texture model becomes

p(ut|α, λ) = (αλ)α/Γ(α)u−α−1
t e−α/(λut) (6)

The new augmented parameter vector to be estimated is

θ = [x, σ2, α, λ] (7)

3. VARIATIONAL BAYESIAN ESTIMATOR

3.1. Background of variational Bayesian inference

Consider a hierarchical probabilistic model

p(Y,X,θ) = p(Y|X,θ)p(X|θ)p(θ) (8)

where Y are the measurements, X are hidden variables, and θ
are unknown parameters. In the exact Bayesian approach, the

unknown parameters are determined by evaluating the joint
posterior density p(X,θ|Y) using the Bayes rule

p(X,θ|Y) = p(Y,X,θ)/p(Y) (9)

while the marginal posterior p(θ|Y) is evaluated by integrat-
ing X out from the joint posterior. However, in practice the
denominator in (9) is usually theoretically intractable except
in some special cases. Moreover, in the case of multiple pa-
rameters in θ even the numerical integration is computation-
ally expensive and time consuming [4]. To address this issue,
approximation methods are needed to determine alternative
density functions. Variational Bayesian estimation aims to
find approximations q(X) and q(θ) to the marginal posterior
densities of parameters that minimize the variational free en-
ergy of the approximate density and the joint pdf in (8) [12].
So the key idea is factorization of q(X,θ) into q(X)q(θ),
thus separating the densities of X and θ. The variational free
energy (FE) for Y,X and θ is given by [2, 4, 3]

F (Y,X,θ) = −
∫

q(X)q(θ) log
p(Y,X,θ)
q(X)q(θ)

dXdθ (10)

The approximate density q(X) of hidden variables is deter-
mined by variational Bayesian expectation (VBE)

q(X) = argmin
q(X)

F (Y,X,θ) (11)

where the optimal solution to (11) is given by

log q(X) = ⟨log p(X|θ)⟩q(θ) + ⟨log p(Y |X,θ)⟩q(θ) + const.
(12)

where ⟨·⟩ is an inner product. The approximate density q(θ)
of the parameters is determined by variational Bayesian min-
imization (VBM)

q(θ) = argmin
q(θ)

F (Y,X,θ) (13)

where the optimal solution to (13) is given by [13, 14]

log q(θ) = log p0(θ) + ⟨log p(Y |X,θ)⟩q(X) + const. (14)

3.2. Variational Bayesian estimator

The new joint probability density function depends on the
measurement vector Y = [y1, · · · , yN ]T , the vector of in-
dependent hidden variables U = [u1, · · · , uN ]T , and the ad-
justed parameter vector θ, which takes the form of

p(yt, ut, x, σ2, α, λ; Φt) = p(yt|ut, x, σ2; Φt) (15)

p0(x, σ
2)p(ut|α, λ)p0(α, λ)

The full data log-likelihood function is given by

Λ(Y,U,θ)=
∑
t

log p(yt|ut, x, σ2; Φt)+
∑
t

log p(ut|α, λ)

+ log p0(x, σ
2) + log p0(α, λ) (16)

Eqn. (16) involves six parameters, which is very complicated.
Next, we present a variation Bayesian approach to approxi-
mate it in the sense of minimization of the free-energy (i.e.,
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KL divergence, [2]), so that analytically trackable closed form
expressions of pdfs can be obtained. The evaluation of (16)
involves the expectation and minimization steps (i.e., E-step
and M-step) while using the VB approach. Due to space limi-
tations, we will omit some details of the mathematical deriva-
tion.

3.2.1. VB estimation step (VBE)

The first step in variational estimation is to determine the ap-
proximate density of the hidden variable ut given the mea-
surements yt by using the minimum free energy principle.
Since the hidden variables ut are independent across time,
the approximate density of the vector U can be written as
q(U) =

∏N
t=1 q(ut). Its approximate density will be ob-

tained by minimizing the free-energy defined in (10), which
can be re-written as

F (Y,U,θ)=−
⟨
Λ(Y,U,θ)

⟩
q(U)

+
⟨ N∑

t=1

log(q(ut))
⟩

q(U)

based upon (16). Hence, the optimization problem is given by

q(ut) = arg min
q(ut)

F (Y,U,θ) (17)

Following the optimal solution in (12), we obtain

log q(ut) = ⟨log p(ut|α, λ)⟩q(α,λ) + (18)

⟨log p(yt|ut, x, σ2)⟩q(x,σ2) + const.

Next, inserting the pdf (4) in (18), we have

q(ut) ∝ u
−
(
⟨α⟩q(α,λ)+1

)
−1

t (19)

e−[⟨α/λ⟩q(α,λ)+⟨|yt−Φtx|2 1
σ2 ⟩q(x,σ2)]/ut

which is consistent with the definition of an inverse Gamma
density function Γ−1(·), leading to a closed form q(ut) =

Γ−1
(
ut; cU , dU

)
with its parameters being cU = ⟨α⟩q(α,λ)+

1 and dU = ⟨α/λ⟩q(α,λ) + ⟨|yt − Φtx|2/σ2⟩q(x,σ2).

3.2.2. VB minimization step (VBM)

The optimization problem for estimating the pdf of the pa-
rameter vector θ is given by

q(x, σ2, α, λ) = arg min
q(x,σ2,α,λ)

F(Y,U,θ) (20)

We write the variational posterior density of the parameter
vector in (14) as follows

log q(x, σ2
a, α, λ) = log p0(α, λ) + log p0(x, σ

2
a)

+
N∑
t=1

⟨
log p(yt|ut, x, σ2

a; Φt)
⟩

q(ut)
+

N∑
t=1

⟨
log p(ut|α, λ)

⟩
q(ut)

+ const. (21)

Note that the terms for the joint pdf of (x, σ2
a) are separable

from the pdf of (α, λ), i.e.,

q(x, σ2
a, α, λ) = q(x, σ2

a) q(α, λ) (22)

Next, we evaluate log q(x, σ2
a) and log q(α, λ) from (21) and

(22) to derive approximate closed forms. We start by writing
the log-function of pdf of (x, σ2

a) as

log q(x, σ2
a) = log p0(x, σ

2
a) +

N∑
t=1

⟨
log 1/(πutσ

2
a)
⟩

q(ut)
(23)

−
N∑
t=1

⟨
|yt − Φtx|2/(utσ2

a)
⟩

q(ut)
+ const.

which leads to the joint pdf q(x, σ2
a), which is a complex

Gaussian inverse Gamma (CGIG) distribution

q(x, σ2
a) ∝ p0(x, σ

2
a)(1/σ

2
a)

N (24)

e−
∑N

t=1 |yt−Φtx|2/σ2
a⟨1/ut⟩q(ut)

Note that the functional form is nicely preserved if the prior
pdf is assumed to be p0(x, σ

2
a) ∼ CGIG(ρ, η, β, µx), which

leads to an explicit single CGIG distribution expression for
q(x, σ2

a).
Next, we examine the logarithm of the joint pdf of (α, λ),

which is given by (where C is a constant)

log q(α, λ)=log p0(α, λ)+
N∑
t=1

⟨log p(ut|α, λ)⟩q(ut)+ C (25)

By (6) and Tl ,
∑N

t=1⟨log ut⟩q(ut), Ti ,
∑N

t=1⟨1/ut⟩q(ut)

we obtain the joint pdf q(α, λ) as follows

q(α, λ) ∝ p0(α, λ)
(αλ )

Nα

(Γ(α))N
e−α(Tl+Ti/λ) (26)

Since this is not a known probability distribution, it can not
provide closed form solutions. We can rely on numerical
means for calculation, or alternatively, we propose to induce
another layer of factorization on the joint pdf q(α, λ) as

q(α, λ) = q(α)q(λ) (27)

via the optimization problem to obtain closed form expres-
sions of q(α) and q(λ), i.e.,

arg min
q(α),q(λ)

F(Y,U, x, σ2, α, λ) (28)

where the new free-energy quantity is defined by

F(Y,U, x, σ2, α, λ) = (29)

−
⟨
Λ(Y,U, x, σ2

a, α, λ)
⟩

q(α)q(λ)q(x,σ2)q(U)

+
⟨

q(α)q(λ)q(x, σ2)q(U)
⟩

q(α)q(λ)q(x,σ2)q(U)

As a result, we obtain the approximate inverse Gamma dis-
tribution for q(λ) = Γ−1(λ; cλ, dλ) and the approximate
Gamma distribution for q(α) = Γ(cα(0), dα(0)) by Lind-
ley’s approximation [15]. Due to space limitations, we will
omit the detailed expressions of q(α) and q(λ) in this paper.
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4. NUMERICAL SIMULATIONS

We present estimation performance of the three estimators by
numerical simulations. The three estimators are: (1) VBN-
PF: Variational Bayesian approach with induced factoriza-
tion on q(α, λ) and a numerical integration for evaluation of
the moments of α. (2) VBL-PF: Variational Bayesian ap-
proach with induced factorization on q(α, λ) and the Lind-
ley’s approximation for evaluation of moments of α [15]. (3)
PXEM: parameter expanded expectation maximization ap-
proach, where q(ut) is updated based on Bayesian approach,
while each of the unknown parameters is determined by using
the maximum likelihood principle [9]. The key differences
between the EM and VB algorithms are twofold. First, in
the EM method, unknown parameters are considered as deter-
ministic values and estimated using the maximum likelihood
(ML) method whereas in the VB method the unknown param-
eters are modeled as random variables and the Bayesian ap-
proach is used to determine their approximate posterior den-
sities. Second, in the EM method, each M-step only receives
the updated sufficient statistics from the E-step, where as in
VB, as a result of the Bayesian principle, the VBM step uti-
lizes the updated priors of the randomized parameters.

The parameters of the clutter model and target model are
chosen as follows: Nakagami parameter α = 3, clutter power
σ2
a = 5 dB, the complex target response x = 1.6 + 1.0i, the

spectral density of the waveform is normalized |Φt| = 1, the
number of observations N varies from 10 to 1000.

Figs. 1(a) shows that, for the parameters σ2, the varia-
tional algorithm VBL-PF outperforms the PXEM algorithm
when the number of observations N < 200 while the VBN-
PF method outperforms the PXEM for all values of N . For
the estimation of Nakagami parameter α, the performance of
VB methods is much better than PXEM in terms of MSE, as
shown in Fig. 1(b). This is because in the PXEM method,
the ML solution is obtained by solving a nonlinear equation
due to the non-Gaussian clutter model. For the estimation of
radar target response x, the three methods have very similar
performance for all values of N as depicted in Fig. 1(c). The
explanation for the similarity is that the unknown parameter
is a linear function of the observations and follows a Gaussian
distribution. Note that ML and Bayesian algorithms usually
have similar performance for Gaussian linear models. The
advantage of VB approach can be observed for non-Gaussian
nonlinear models such as the ones that involve σ2 and α. This
observation is consistent with existing literature on variational
Bayesian studies [4, 14]. Finally, The estimation performance
of the adjustment parameter λ is not discussed as it is only a
nuisance parameter for correcting the multiplicative error.

5. CONCLUSION

We develop variational Bayesian algorithms for estimating
multi-parameters of a compound Gaussian clutter model and
target response. The VB method yields closed form ex-
pressions for the posterior probability density functions and
results in improved estimation performance for the clutter
model, especially for parameters of non-Gaussian nonlinear
models and when the number of measurements is small.
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Fig. 1. Comparison of mean squared error (MSE) between
PXEM, VBN-PF and VBL-PF. (a) clutter noise variance σ2,
(b) Nakagami parameter α, and (c) target response x.
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