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ABSTRACT

Cramér-Rao lower bounds (CRLBs) are proposed for deter-

ministic parameter estimation under model mismatch condi-

tions where the assumed data model used in the design of

the estimators differs from the true data model. The pro-

posed CRLBs are defined for the family of estimators that

may have a specified bias (gradient) with respect to the as-

sumed model. The resulting CRLBs are calculated for a lin-

ear Gaussian measurement model and compared to the per-

formance of the maximum likelihood estimator for the corre-

sponding estimation problem.

Index Terms— Statistical Signal Processing, Cramér-

Rao Lower bound, Parameter Estimation, Model mismatch

1. INTRODUCTION

Evaluating the performance of estimators generally relies on

the achievable accuracy for the considered problem. When

the mean square error (MSE) is used in performance evalu-

ation, the lower bounds for the achievable MSE are utilized

to answer questions such as: 1) Are the performance require-

ments set for the estimator feasible? 2) Has the estimator

under evaluation sufficiently close performance to what is

achievable for the problem? 3) Is there a large gap between

the estimator’s performance and the best achievable per-

formance suggesting that there might be improvements if

alternative estimators are designed?

The most well-known and popular lower bound for as-

sessing MSE performance is the Cramér-Rao lower bound

(CRLB) [1, 2]. CRLB can be defined for both determinis-

tic [3–7] and random parameter estimation [3, 8] problems

for both unbiased [3–5] and biased estimators [3,4]. It is well

known that the CRLB is generally achieved by estimators

under high SNR conditions and if the CRLB is achievable,

the maximum likelihood (ML) estimator achieves it.

In this work, we consider CRLB type lower bounds for de-

terministic parameter estimation under model mismatch con-

ditions, where the assumed data model used in designing the

estimator differs from the true model. Although the literature

on CRLB under model-match conditions is vast, there are

very few studies devoted to the model mismatch case [9, 10].

The most relevant contribution to our work in the literature

is the recent work by Richmond and Horowitz [10] where a

CRLB type bound is computed for the MSE of the estimators

having a specified bias with respect to (w.r.t.) the true model.

The fundamental difference between our approach and [10]

is that, in our contribution, CRLBs are derived for estimators

that are unbiased or that have a specified bias (gradient) w.r.t.

the assumed model. Moreover, the two approaches propose

different score functions. The CRLB derived here can be

considered to be more meaningful, as it is not restricted to the

estimators for which the bias w.r.t. the true model has to be

known.

2. CRLB UNDER MODEL MISMATCH

In parameter estimation, we are interested in inferring a deter-

ministic parameter x ∈ R
n from a set of noisy measurements

y ∈ R
m. The corresponding estimator x̂(y) often requires a

suitable model that relates the data to the unknown parame-

ter.In general, the true model is not known and hence a model

mismatch appears which has to be accounted for. In the se-

quel, CRLBs under model mismatch conditions are developed

that can be used to assess the fundamental performance limits

of estimators which are influenced by model mismatch.

2.1. Unbiased Estimators

We introduce an unbiased estimator x̂(y) that is not aware of

the true measurement model. Hence, unbiasedness has to be

defined w.r.t. an assumed model as follows

Ep(y|x){x̂(y)} =

∫

x̂(y)p(y|x) dy = x, (1)

where p(y|x) is the assumed likelihood function. The mean

square error matrix P under model mismatch is given as

P = Ep0(y|x){(x̂(y)− x)(x̂(y)− x)T }

=

∫

(x̂(y)− x)(x̂(y)− x)T p0(y|x) dy, (2)
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where p0(y|x) is the true likelihood function. Note that x̂(y)
is the estimator derived under the assumed likelihood function

p(y|x), while the expectation for mean square error is per-

formed w.r.t. the true likelihood function. Then, the CRLB

under model mismatch is given by the following theorem.

Theorem 1. If x̂(y) is any unbiased estimator of x w.r.t. the

assumed model, then the MSE matrix under model mismatch

can be lower bounded as follows

P ≥ J−1
MM(x), (3)

where the matrix inequality A ≥ B is equivalent to stating

that (A − B) is positive semi-definite. The n × n Fisher in-

formation matrix (FIM) under model mismatch is given by

JMM(x) = Ep0(y|x)

{

s(x, y)sT (x, y)
}

, (4)

with n× 1 score function

s(x, y) =
p(y|x)

p0(y|x)
· [∇x log p(y|x)]. (5)

Proof. See Appendix 5.1.

It is worth stressing that the CRLB under model mismatch

provides a lower bound on the MSE matrix under model mis-

match and not the corresponding covariance matrix. This in

turn means that the derived CRLB holds also for estimators

that are biased w.r.t. the true model, but need to be unbiased

w.r.t. the assumed model. In case there is no model mismatch,

i.e. p(y|x) = p0(y|x) the FIM reduces to the standard FIM.

Of particular importance is the condition when the bound sat-

isfies the equality, as it is often used to assess if an estima-

tor is efficient [4, 5]. For the model mismatch case, an un-

biased estimator w.r.t. the assumed model is called efficient

if the estimator’s MSE matrix P coincides with the CRLB,

i.e. P = J−1
MM(x) holds. The following proposition gives the

necessary and sufficient condition under which the estimator

efficiency is achieved.

Proposition 1. An unbiased estimator x̂(y) w.r.t. the assumed

model is efficient, i.e. P = J−1
MM(x) holds, if and only if

s(x, y) = JMM(x) · (x̂(y)− x), ∀y. (6)

Proof. See Appendix 5.2.

In case there is no model mismatch, i.e. p(y|x) = p0(y|x)
holds, the equality condition reduces to the well known equal-

ity condition for the standard CRLB, see [4, 5]. As a result,

in order to test an estimator for efficiency requires only the

knowledge of s(x, y) and JMM(x), which can be determined

from the true likelihood p0(y|x) and the estimator’s assumed

likelihood p(y|x), and the estimator x̂(y) w.r.t. the assumed

model.

2.2. Biased Estimators

The results presented in Theorem 1, can be generalized to

estimators x̂(y) that are biased w.r.t. the assumed model, i.e.

Ep(y|x){x̂(y)} = x+ b(x) (7)

holds, where b(x) = [b1(x), b2(x), . . . , bn(x)]
T denotes the

bias vector that may depend on the unknown x. We further

introduce the n×n bias Jacobian matrixB(x) = ∂b(x)
∂x

. Then,

the CRLB under model mismatch for biased estimators can be

stated in the following theorem.

Theorem 2. If x̂(y) is a biased estimate of x w.r.t. the as-

sumed model, then the MSE matrix under model mismatch

can be lower bounded as follows

P ≥ [In +B(x)] J−1
MM(x) [In +B(x)]T (8)

Proof. See Appendix 5.1.

Note that the above inequality holds irrespective of

whether the estimators are biased w.r.t. the true model or

not.

3. APPLICATION TO LINEAR MODELS

The theoretical results of the previous section are validated

on a couple of examples. It is assumed that the measurements

are generated from the following true linear model

y = C0x+ v0, (9)

where y is an m × 1 observation vector, C0 is a m × n ob-

servation matrix of rank n satisfying m > n, x is a n × 1
vector of parameters to be estimated, and v0 is an m×1 noise

vector with pdf p(v0) = N (v0; 0, R0). The true likelihood

function is then given by p0(y|x) = N (y;C0x,R0). The es-

timator x̂(y) is generally not aware of the true model and sub-

sequently has to introduce model assumptions. In the follow-

ing it is assumed that the linear structure and the noise pdf is

known, but C0 and R0 are unknown and are replaced by C 6=
C0 andR 6= R0, respectively. Hence, the estimator’s assumed

likelihood function is given by p(y|x) = N (y;Cx,R).

3.1. FIM under model mismatch

The FIM under model mismatch, cf. (4), is given as follows:

JMM(x) =

√

|R0|

|R|

√

|R̃|

|R|
exp

{

1

2
v̄T (R0 −R/2)−1v̄

}

× CTR−1
[

R̃+ ṽṽT
]

R−1C, (10a)

with

R̃ = R/2−R/2(R/2−R0)
−1R/2 > 0, (10b)

v̄ = (C0 − C)x, (10c)

ṽ = R/2(R/2−R0)
−1v̄, (10d)
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under the assumption that R0 > R/2. If this assumption is

not satisfied JMM goes to infinity. From the above expression,

a couple of special cases can be derived. If C0 = C, then

JMM(x) =

√

|R0|

|R|

√

|R̃|

|R|
CTR−1R̃R−1C. (11)

If R0 = R, then we arrive at

JMM(x) = exp
{

v̄TR−1v̄
}

CTR−1
[

R + v̄v̄T
]

R−1C. (12)

Clearly, if C = C0 and R = R0 are known, we arrive at the

FIM for the true model, given by JTM = CT
0 R

−1
0 C0. Sim-

ilarly, the FIM for the assumed model is given by JAM =
CTR−1C.

3.2. MLE under model mismatch

For performance comparison, we introduce the ML estimator

(MLE) w.r.t. the assumed model, which is given by

x̂ML = (CTR−1C)−1CTR−1y. (13)

It can be easily shown that the MLE is unbiased w.r.t. the as-

sumed model and its MSE matrix is equivalent to the CRLB

for the assumed model, which is given by MSE(x̂ML) =
J−1

AM = (CTR−1C)−1. The expected MSE performance of

the MLE under model mismatch is of particular importance.

The ML estimator bias and covariance w.r.t. the true model

p0(y|x) is

b0(êML) =[(CTR−1C)−1CTR−1C0 − In]x, (14)

Cov0(êML) =(CTR−1C)−1CTR−1R0R
−1C

× (CTR−1C)−1. (15)

where we have defined êML = x̂ML − x. Then, the MSE for

the MLE under model mismatch can be expressed as follows:

MSE0(êML) = Cov0(êML) + b0(êML)b
T
0 (êML). (16)

Again, a couple of special cases can be derived. If C0 =
C, then the MLE under model mismatch is unbiased, and

MSE0(êML) equals Cov0(êML). If R0 = R, then the MLE

under model mismatch is biased, but the covariance reduces

to Cov0(êML) = (CTR−1C)−1.

3.3. Examples

In the following, the tightness of the CRLB under model

mismatch is evaluated using different examples. For ease of

exposition, we assume that C0 = [1, 1]T and C = [1,∆]T

where ∆ is varied in the interval [0, 2], and let x = 1. In

the first example, we assume R0 = 10 I2 and R = 0.8R0,

and compare the performance of the MLE under model mis-

match (analytically using (16) and numerically using (13)

from 2000 Monte Carlo runs) with the CRLB under model

mismatch (CRLB (MM) = J−1
MM(x)), the CRLB of the true

model (CRLB (TM) = J−1
TM ), and the CRLB of the assumed

model (CRLB (AM) = J−1
AM). The results in Fig. 1 (a) show

that both the CRLB (MM) and the CRLB (AM) provide a

lower bound for all values ∆. For the case that ∆ = 1,

there is no model mismatch in C and CRLB (TM) coincides

with the MLE, which is a result of the special structure of

R. While the CRLB (MM) is guaranteed to provide a lower

bound for any unbiased estimator under model mismatch, this

property generally does not hold for CRLB (TM) and CRLB

(AM). In Fig. 1 (b), a second example is shown where we
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(a) R0 = 10 I2, R = 0.8R0
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(b) R0 = 5 I2, R = 1.2R0

Fig. 1. MSE vs. ∆ of (a) Example 1 and (b) Example 2

assume R0 = 5 I2 and R = 1.2R0, i.e. the MLE is using a

larger covariance than the true one. It can be observed that the

CRLB (AM) no longer provides a lower bound on estimation

performance, due to the increased uncertainty resulting from

the choice of R. The CRLB (MM) however, is not affected

by this and still provides a lower bound on the estimation

performance.

4. CONCLUSION

In this article, we derive a novel set of CRLBs which account

for the errors that occur from possible model mismatches

when the estimator is unaware of the true model. We provide

simulation results where these bounds are used to predict

the performance of the ML estimator in case of a model

mismatch.
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5. APPENDIX

5.1. Proof of Theorem 1 and Theorem 2

We mainly follow the classical derivation of the CRLB such

as the one in [5] and extend it to the case of model mis-

match and biased estimators (for unbiased estimators, simply

set b(x) = 0). We assume the classical regularity condition

given as
∫

∇xp(y|x) dy = 0 ⇔

∫

∇x log p(y|x)p(y|x) dy = 0 (17)

is satisfied for all x, where ∇x denotes the gradient w.r.t. vec-

tor x. In order to cover the vector parameter case, we define

arbitrary vectors a, b ∈ R
n. The biasedness condition for x

under the assumed likelihood can be written as
∫

x̂(y)p(y|x) dy = x+ b(x). (18)

Taking the derivative of both sides with respect to xi (ith ele-

ment of x), we get
∫

x̂(y)∇xi
p(y|x) dy = ei +∇xi

b(x) (19)

which is equivalent to
∫

x̂(y)∇xi
log p(y|x)p(y|x) dy = ei +∇xi

b(x) (20)

for i = 1, . . . , n where ei is a vector of all zeros except the ith
element which is unity. We can write (20) for i = 1, . . . , n in

a single matrix equation given as
∫

x̂(y) [∇x log p(y|x)]
T
p(y|x) dy = In +B(x) (21)

where In is an identity matrix of size n × n and B(x) is the

bias Jacobian matrix. Since (17) is satisfied, we have

x

∫

[∇x log p(y|x)]
T p(y|x) dy = 0n. (22)

where 0n is a matrix of zeros with size n × n. Subtracting

both sides of (22) from those of (21), we get
∫

(x̂(y)− x) [∇x log(y|x)]
T p(y|x) dy = In +B(x).

(23)

We can write (23) as
∫

(x̂(y)− x) sT (x, y) p0(y|x) dy = In +B(x), (24)

with score function s(x, y) as introduced in (5). In order to

invoke the Cauchy Schwarz inequality we multiply both sides

by aT and b from the left and the right respectively to get
∫

aT (x̂(y)− x) sT (x, y) b p0(y|x) dy

= aT (In +B(x))b. (25)

Now invoking the Cauchy Schwarz inequality under the inner

product given as

〈f(·), g(·)〉 ,

∫

f(y)g(y)p0(y|x) dy (26)

for two functions f(·), g(·), we obtain
∫

aT (x̂(y)− x) (x̂(y)− x)
T
a p0(y|x) dy

×

∫

bT s(x, y)sT (x, y) b p0(y|x) dy ≥ (aT (In +B(x))b)2,

(27)

which is equivalent to

aTPa ≥
(aT (In +B(x))b)2

bTJMM(x) b
, (28)

where P and JMM(x) are defined as in (2) and (4). Since b is

arbitrary, we can choose it as b = J−1
MM(x) · (In + B(x))T a,

to give

aTPa ≥
(aT (In +B(x))J−1

MM(x)(In +B(x))T a)2

aT (In +B(x))J−1
MM (x)(In +B(x))T a

= aT (In +B(x))J−1
MM(x)(In +B(x))T a (29)

Since the inequality (29) holds for arbitrary vectors a, the ex-

pression given in (8) holds (and (3) holds when B(x) = 0),

which concludes our proof of Theorem 1 and Theorem 2.

5.2. Proof of Proposition 1

The equality for the Cauchy-Schwarz inequality used in the

derivation of the CRLB under model mismatch is obtained if

and only if

aT (x̂(y)− x) = c(x)bT s(x, y) ∀y, (30)

where c(x) is a scalar which may depend on x but not on y.

Since the selection b = J−1
MM (x)a is made, we have equality

if and only if

aT (x̂(y)− x) = c(x)aT J−1
MM (x)s(x, y). (31)

Since a is arbitrary, the equality is achieved if and only if

(x̂(y)− x) = c(x)J−1
MM (x)s(x, y). (32)

We multiply both sides of the equation above by sT (x, y)
from the right to obtain

(x̂(y)− x)sT (x, y) = c(x)J−1
MM (x)s(x, y)sT (x, y). (33)

Taking expected value of both sides w.r.t. to the true model,

we get

Ep0(y|x)

[

(x̂(y)− x)sT (x, y)
]

=c(x)J−1
MM (x)JMM (x)

In =c(x)In, (34)

where the second equality follows from the fact that (24)

holds with B(x) = 0. Hence c(x) = 1 which, when substi-

tuted into (32), completes the proof.
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