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ABSTRACT

We investigate the range estimate between two wireless
nodes without time stamps exchanging. Considering prac-
tical aspects of oscillator clocks, we propose a new model
for ranging in which the measurement errors include the
sum of two distributions, namely, uniform and Gaussian.
We then derive an approximate maximum likelihood es-
timator (AMLE), which poses a difficult global optimiza-
tion problem. To avoid the difficulty in solving the com-
plex AMLE, we propose a simple estimator based on the
method of moments. Numerical results show a promising
performance for the proposed technique.

1. INTRODUCTION

Accurate distance estimates between two wireless nodes is
a vital requirement for many applications, e.g., localizing
the position of an unknown node [1, 2]. Among different
approaches, the range estimate based on two-way time-
of-arrival (TW-TOA) has attracted considerable attention
in the literature and been proposed for practical applica-
tions, e.g., in IEEE 802.15.4a [3]. Traditionally, ranging
based on TW-TOA involves exchanging the time stamps
measured with respect to local clocks of different nodes.
Namely, a master node initiates transmitting a signal at a
certain time to a slave node and receives a response from
the slave node after a delay corresponding to the distance
between two nodes and a processing time, the so-called
turn-around time [4], at the slave node. The processing
time can be estimated by the slave node, e.g., using a loop-
back test [1], and then sent back to the master node. An-
other approach to accurately estimate the range between
two nodes is based on chirp-spread-spectrum that shows
good performance in some situations [5,6].

It has been generally argued that ranging based on
TW-TOA is severely affected by an imperfect clock [5,
7, 8]. An affine model, consisting of clock offset and
clock skew parameters, is commonly considered to de-
scribe the behavior of a clock of an oscillator [9–11]. For
such a model, it is clearly seen that the distance estimate
is mainly affected by an imperfect clock skew [12]. A
number of studies tackled the positioning problem in the
presence of unknown clock parameters in the past few
years [11–15].

In the literature, it is commonly assumed that the clock
of an oscillator can be read continuously [13, 16]. More-
over, it is assumed that nodes are able to communicate
with each other during the ranging period. In this study,
we depart from these assumptions and consider sensor
nodes as pure ranging devices. As it is common in prac-
tice, a nominal value for the processing time is embedded
in every node and once the slave node detects a signal,
it responds according to the predefined turn-around time.
Since in practice the clock of an oscillator can be read at
certain times, e.g., at rising edges, we model the delay in
detecting the arrival time by a uniform distribution. We,
then, model the perturbation in ranging using the sum of
two distributions, i.e., uniform and Gaussian, respectively,
for modeling the delay in detecting the signal and the time-
of-arrival estimation error. For such a model, we derive
an approximate maximum likelihood estimator (AMLE),
which poses a difficult global optimization problem due to
nonconvexity of the AMLE objective function. We then
propose a low complexity approach based on themethod
of moments(MOM) to estimate unknown parameters. The
numerical results show a promising performance of the
proposed approach, specially for high signal-to-noise ra-
tios. In summary, the main contributions of this study are
(a) a new ranging model for practical applications; (b) an
approximate MLE (AMLE) for the proposed model; (c)
a new low complexity technique based on the MOM for
estimating the unknown parameters.

2. SYSTEM MODEL

Consider two master and slave nodes performing ranging
using TW-TOA measurements. For the master node, we
use a time-to-digital convertor (TDC) allowing us to mea-
sure time stamp, which is not affected by imperfect clock
of the master node. Note that the TDC is a passive de-
vice; hence, it can not be used at the slave node to force
the node to transmit the signal after certain processing de-
lay. For details, see, e.g., [17]. In the literature, different
models are used to describe a local clock. Among them,
the popular one is an affine model expressed as [9,16,18]

Cs(t) = θ0 + w t , (1)

with Cs(t) as the local clock of the slave node with respect
to the perfect time. In this model,θ0 andw denote, respec-
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tively, the relative clock offset and the clock skew between
the slave node and the reference timet. The model in (1)
assumes that the clock of an oscillator can be read contin-
uously, while in practice reading time happens at discrete
instances, namely, at rising or falling edges.

The relation between the clock skew and the oscillator
frequency offset can be seen as follows. Let us consider
the frequencyfs of a slave node that deviates from nomi-
nal frequencyfo = 1/To. The common imperfections are
frequency offset and phase noise phenomena. Thus, we
can model the frequencyfs as

fs = fo ±∆f + ξ(t), (2)

where∆f denotes an offset andξ(t) shows the perturba-
tion, which is assumed to be zero-mean. Therefore,

Ts =
1

fo ±∆f + ξ(t)
≈ To(1 ∓ ρ) + ζ(t) (3)

whereρ , ∆f/fo is the deviation from ideal clock (w =
1∓ρ is called clock skew) andζ(t) = −ξ(t)/fo is known
as clock jitter. Therefore, it is observed that the periodTs

is a stochastic process with meanTo(1 ∓ ρ). In the rest
of the paper, we assume that the jitter is small and can be
neglected in the ranging process.

We now investigate the ranging in the presence of
clock imperfections at the slave node. In thek-th round
of performing TW-TOA, the master node sends a sig-
nal to the slave node and receives a reply after a delay
corresponding to the distance between the nodes and a
processing delayTD

s , giving rise to the following model:

zk =
d

c
+

TD
s

2
+ nk, k = 1, . . . , N (4)

wherenk is modeled by a zero-mean Gaussian random
variable, i.e.,nk ∼ N (0, σ2) [1], and c is the speed
of propagation,d is the Euclidian distance between two
nodes. We now model the delayTD

s as follows. In prac-
tice, a nominal value for the delay is set into every node,
say,TD = DTo, whereD is an integer. It means that
the slave node replies the detected signal afterwDTo.
Therefore, the total delay at slave node can be modeled by

TD
s = wDTo + ǫk (5)

whereǫk determines the delay in detecting the signal pres-
ence. In fact, the arrived signal at the slave node may be
detected afterǫk, i.e., at the first rising edge of the clock.
A natural way to modelǫk is to employ a uniform distri-
bution ǫk ∼ U(0, wTo). In fact, for high-signal-to-noise
ratios (SNRs), with high probability time-of-arrival detec-
tion happens in the period that signal arrives.

Replacing (5) into (4), we obtain the following model
for ranging via TW-TOA:

zk =
d

c
+

wDTo

2
+

ǫk
2

+ nk k = 1, . . . , N. (6)

Clearly, it is seen that the perturbationǫk/2 + nk has
nonzero meanwTo/4, which depends on unknown clock
skew. For largeD, we may successfully neglectǫk in (6),
especially for tinyTo, and arrive at the traditional model
of ranging considered in the literature. But, in general,
the delay in detecting the arrival signal needs to be taken
into account to have a more accurate model. In addition,
a small value for the processing delay in slave node, small
D, is preferable for some applications, e.g., for fast rang-
ing.
2.1. Maximum Likelihood Estimator

We consider the vector of measurementz , [z1, . . . , zN ]T

and assume thatǫk andnk are independent. In addition, it
is assumed thatnk(or ǫk) andnℓ(or ǫℓ) are independent
for k 6= ℓ. Thus, the probability density function (pdf) of
the measurement vectorz can be calculated as

pZ(z; θ) =

N∏

k=1

∫ wT0

x=0

pZk
(zk|x, θ)pǫk(x)dx

=

N∏

k=1

∫ wT0

x=0

1√
2πσwT0

exp

(
− (αk − x/2)2

2σ2

)
dx (7)

whereαk , zk − d/c − wDT0/2 andθ , [d, w, σ].
The integral in (7) has no closed-form expression. For any
x ∈ R, we instead use the following approximation [19]:

∫ x

0

exp(−πt2)dt ≈ 1

2
tanh

(
39x

2
− 111

2
arctan

(
35x

111

))
.

Using the above approximation, we obtain

∫ wT0

x=0

1√
2πσ2wT0

exp

(
− (αk − x/2)2

2σ2

)
dx

=
2

wT0

[∫ αk
√

2πσ

0

exp (−πt2)dt−
∫ αk−wT0/2

√

2πσ

0

exp (−πt2)dt

]

=
1

wT0

[
tanh

(
39αk

2
√
2πσ

− 111

2
arctan

(
35αk

111
√
2πσ

))

− tanh

(
39βk

2
√
2πσ

− 111

2
arctan

(
35βk

111
√
2πσ

))]
,

whereβk = αk −wT0/2. Hence, we obtain the following
approximation for the pdf of measurements in (7):

pZ(z; θ) = (wT0)
−N

N∏

k=1[
tanh

(
39αk

2
√
2πσ

− 111

2
arctan

(
35αk

111
√
2πσ

))

− tanh

(
39βk

2
√
2πσ

− 111

2
arctan

(
35βk

111
√
2πσ

))]
.
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maximize
σ; w; d

−N(wT0) +

N∑

k=1

log

[
tanh

(
39αk

2
√
2πσ

− 111

2
arctan(

35αk

111
√
2πσ

)
− tanh

(
39βk

2
√
2πσ

− 111

2
arctan(

35βk

111
√
2πσ

)]

(8)
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Fig. 1. AMLE cost function for (a)d andw for fixedσ = 1/c, (b) d andσ for fixedw = 1.0001, and (c)w andσ for
fixedd = 50.

We now obtain the AMLE expression by solving an opti-
mization problem, expression (8) shown at the top of the
page. It is observed that the optimal estimator poses a dif-
ficult global optimization problem. To get some feeling
about the shape of the objective function, we fix one pa-
rameter and plot the value of the objective function over
two other parameters in Fig. 1. As it is observed, the ob-
jective function for a fixed parameter has many maxima
and it may also be discontinuous for some values. In the
coming section, we propose a simple estimator based on
the method of moments (MOM).

2.2. A Low Complexity Estimator

We first consider the relations between the unknown pa-
rameters and the following statistics:

µ1 , Ezk =
d

c
+

(
D

2
+

1

4

)
wT0 (9)

µ2 , E(zk − µ1)
2 = σ2 +

(wT0)
2

48
(10)

µ4 , E(zk − µ1)
4 = 3σ4 + σ2 (wT0)

2

8
+

(wT0)
4

1280
.

(11)

The statisticsµ1, µ2, andµ4 can be approximated by the
means of ensemble averaging as follows:

µ1 ≈
∑N

k=1 zk
N

= S1,

µ2 ≈
∑N

k=1(zk − S1)
2

N
= S2

µ4 ≈
∑N

k=1(zk − S1)
4

N
= S4.

From (10) and (11), we obtain

a(wTo)
4 = µ4 − 3µ2

2 (12)

wherea , 1/1280 − 3/482. Hence, an estimate of the
clock skew is obtained as

ŵ =
1

To

(∣∣∣∣
S4 − 3S2

2

a

∣∣∣∣
)1/4

. (13)

We use the absolute value in (13) to prevent ambiguity due
to noise in estimating the clock skew.

ConsideringwK = (1 + ρ)K ≈ 1 +Kρ, we can also
estimate the clock skew from (12) as

w̃ = 1 +
aT 4

o − S4 + 3S2
2

4aT 4
o

. (14)

We can now estimate the distance and the varianceσ2 as

d̂ = c

(
S1 −

(
D

2
+

1

4

)
w̃T0

)
, (15)

σ̂2 =

∣∣∣∣S2 −
(w̃T0)

2

48

∣∣∣∣ . (16)

The mean of the estimator proposed in (14) is

Ew̃ = 1 +
aT 4

o − ES4 + 3ES2
2

4aT 4
o

. (17)

Using the law of large numbers, we have

1

N

N∑

k=1

zk → µ1 =
d

c
+

(
D

2
+

1

4

)
wT0, N → ∞.

We now compute the expectations on the right-hand side
of (20) as follows.

ES4 = E
1

N

N∑

k=1

(z̃4k − 4z̃3kS̃1 + 6z̃2kS̃
2
1 − 4z̃kS̃

3
1 + S̃4

1)
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Fig. 2. Comparison between different approaches, (a) the
mean of distance estimate and (b) the RMSE of the esti-
mate.

wherez̃k , zk − µ1 andS̃1 = 1/N
∑N

ℓ (zk − µ1). Since
z̃k are iid, we have

Ez̃3kS̃1 =
1

N
Ez̃4k, Ez̃kS̃

3
1 =

Ez̃4k
N3

+
3(N − 1)

N3
(Ez̃2k)

2

Ez̃2kS̃
2
1 =

Ez̃4k + (N − 1)Ez̃2k
N2

, ES̃4
1 =

Ez̃4k + (N − 1)Ez̃2k
N3

Hence,

ES4 =

(
1 +

2N − 3

N3

)
Ez̃4k +

6(N − 1)2

N3
(Ez̃2k)

2

= Ez̃4k +O(1/N) (18)

Likewise, we can show that

ES2
2 = (Ez̃2k)

2 +O(1/N). (19)

ConsideringEz̃4k = 3σ4 + σ2(wT0)
2/8 + (wT0)

4/1280
andEz̃2k = σ2 + (wT0)

2/48, it is verified that

Ew̃ = 1 +
aT 4

o − a(wT0)
4

4aT 4
o

+O(1/N)

≈ 1 +
aT 4

o − a(wT0)
4

4aT 4
o

≈ w, N ≫ 1, (20)

meaning that the estimator is unbiased for large number of
samples.
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Fig. 3. The mean of the distance estimate versus the num-
ber of samplesN .

3. SIMULATION RESULTS

We compare the proposed technique with the traditional
approach without clock skew compensation and a tech-
nique based on approximating the turn-around time at the
slave node via loop-back test and then sending back the
estimate to the master node. In the simulation, we use
d = 30 [m], fo = 100 MHz. We considerρ = 0.0001,
which corresponds to a frequency offset equal to10 kHz.
In the simulation, we setD = 10 and we collect TW-TOA
measurements for 10 ms. To obtain the results, we run the
algorithms for 1000 realizations of noise.

In Fig. 2, we plot the mean of the distance estimate
and the root-mean-square error (RMSE) of the estimate
for different approaches. As it is observed, the proposed
technique shows a considerable gain, especially for high
SNRs.

Fig.3 shows the mean of the estimate versus the num-
ber of distance estimates, i.e., Eq. (15),N for fixed σ =
0.1/c. As it is observed, after a sufficient number of sam-
ples, e.g., 100 corresponding to1 micro second, the esti-
mate is very close to the theoretical value.

4. CONCLUSIONS

In this paper, we have studied the distance estimate be-
tween two nodes using TW-TOA. Considering practical
aspects, we have modeled the range estimate using the
sum of two distributions, uniform and Gaussian. We
showed that the optimal estimator is complex and not
easy to solve. Then, we proposed a low complexity tech-
nique based on the method of moments. Numerical results
show a promising performance for the proposed approach,
especially for high signal-to-noise ratios.
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