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ABSTRACT

This paper considers the problem of parameter estimation for mul-
tiple scattering process on the sphere. Using harmonic analysis, a
Fourier expansion of the pdf of the process is obtained. Based on
the Fourier coefficient statistics, we consider the problem of esti-
mating the parameter of the process using an Approximate Bayesian
Computation (ABC) approach. Simulations show the ability of the
proposed approach for the density estimation of intensity and con-
centration parameters for the von Mises Fisher multiple scattering
process.

Index Terms— Multiple scattering process on the sphere, Har-
monic analysis, Method of Moments, Bayesian Inference, Approxi-
mate Bayesian Computation, von Mises-Fisher distribution.

1. INTRODUCTION

The description of multiple scattering using random processes is
well known in Physics, especially in speckle and backscattering de-
scription. In many cases, scattering description consider spatial dis-
order information and describe a scattering medium using random
fields [1]. In this paper, we consider the case of forward multiple
scattering of a vector valued variable (direction of propagation). The
random process of interest here thus describes the time evolution of a
unit vector, i.e. an element of the unit sphere S2 in three dimensional
space. The presented results can be formulated for any dimension p,
i.e. for elements of the hyperspheres Sp−1 in Rp, but focus is made
on the case p = 3.

Estimation for such processes has been investigated using non-
parametric methods in [2, 3], where authors used the Henyey-
Greenstein distribution to model the scatterers effect. The decom-
pounding technique was also applied to geometric phase analysis
using an EM approach in [4]. Recently, the use of von Mises Fisher
distribution has also been proposed in [5] to provide approxima-
tion of the density of the multiple scattering process and perform
estimation of the scattering parameters.

In this paper, we propose to use Approximate Bayesian Compu-
tation (ABC) to perform inference on the multiple scattering process
parameters. This method is compared to the Generalized Method of
Moments (GMM) estimator thanks to an adapted version of the Pop-
ulation Monte Carlo (PMC) algorithm. Simulations illustrate the
interest of using ABC approach for the von Mises-Fisher multiple
scattering process characterization in different scenarios.
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2. MULTIPLE SCATTERING PROCESS ON S2

The purpose of the multiple scattering process model is to describe
the distribution of the output direction of propagation, denoted xt ∈
S2, when a particle/wave has traveled through a random medium for
a time t. Such medium is considered to be made of a homogeneous
matrix with small circular and isotropic inclusions, i.e. scatterers.
The number of scatterers is unknown and the number of them en-
countered by the wave/particle during a time t is modeled by a ho-
mogeneous Poisson counting process Nt with parameter λt. The
parameter λ is related to the mean free path η of the random media
by η = c/λ where c is the celerity in the medium.

2.1. Isotropic random walk on S2

Consider an initial vector x0 = µ ∈ S2, subject to n consecutive
random isotropic rotations. The generated random walk is the set of
n vectors x0, . . . ,xn ∈ S2 with independent steps xk−1 → xk for
all k ≥ 1. The isotropic assumption of the random walk involves
that the conditional pdf

f(xk|xk−1) = gk,k−1(x
T
k−1xk) (1)

is symmetrical, i.e. only function of the cosine xTk−1xk.
As explained in [6], symmetrical pdfs on S2 are elements of

L1(SO(2)\SO(3)/SO(2),R), with the additional constraint that∫
S2 f(x)dx = 1. The double coset SO(2)\SO(3)/SO(2) is the

orbit of the group action of SO(2)× SO(2) on elements of SO(3)
with left and right action of SO(2). In the sequel, we make use
of the notation H for the double coset SO(2)\SO(3)/SO(2), i.e.
H ∼= SO(2)\SO(3)/SO(2). Functions belonging to L1(H,R) are
known to be parametrized by the (co)lattitude with respect to the
axis left invariant, and thus can be thought as functions g(xTµ) =
g(cos θx) where µ is the axis left invariant by the action of SO(2).

A pdf f(x;µ) on S2, symmetrical with respect to µ, has a char-
acteristic function given by

f̂` = E [P`(cos θx)] = E
[
P`(µ

Tx)
]

(2)

=

∫
S2
f(x;µ)P`(µ

Tx)dx (3)

with P` the Legendre polynomial of order ` ≥ 0. The Legendre
polynomial moments |f̂`| ≤ 1, for all ` ≥ 0, are the Fourier coeffi-
cients of the Fourier/Legendre expansion of f

f(x;µ) =
∑
`≥0

(2`+ 1)

4π
f̂`P`(cos θx). (4)
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The convolution product in L1(H,R) is inherited from the one in
L1(SO(3),R) [6], and takes the form

(f ?µ g) (x) =

∫
S2
f(xTy)g(yTµ)dy, (5)

where ?µ indicates that the (co)latitudes are measured with respect
to µ. This convolution product fulfills the following properties:
• i) Stability:

For f, g ∈ L1(H,R), then:

(f ?µ g) (x) = (f ?µ g) (µ
Tx)

which means that f ?µ g ∈ L1(H,R).
• ii) Fourier product:

Given f, g ∈ L1(H,R) and their Legendre polynomial mo-
ments f̂` and ĝ`, then their convolution product has the mo-
ments:

̂(f ?µ g)` = f̂` ĝ`

Thanks to the stability of the convolution product, the expression of
the pdf of the n-step random walk takes a remarkable form.

Theorem 1. Given an isotropic n-step random walk on S2, the pdf
of xn ∈ S2 is the n-fold convolution in L1(H,R), where SO(2) is
the rotation subgroup such that µ is left invariant. It reads

f(xn;µ) = (gn,n−1 ?µ · · · ?µ g1,0) (xn), (6)

where f(xk|xk−1) = gk,k−1(x
T
k xk−1) can be identified as the

conditional pdf of xk given xk−1.

Proof. The proof is conducted by induction. Since x0 = µ is a
deterministic vector, the pdf of x1 is f(x1;µ) = g1,0(µ

Tx1) and
belongs to L1(H,R). Thus the base case holds for n = 1. As-
sume now that the pdf of xk−1, for k > 1, is symmetrical with re-
spect to µ, i.e. f(xk−1;µ) = gk−1(µ

Txk−1) ∈ L1(H,R), and is
given by the following (k− 1)-fold convolution: fk−1(xk−1;µ) =
(gk−1,k−2 ?µ · · · ?µ g1,0) (xk−1). Due to the isotropic assump-
tion, the conditional pdf f(xk|xk−1) = gk,k−1(x

T
k xk−1) also be-

longs to L1(H,R). Moreover, this conditional pdf allows us to ex-
press the density of xk as

f(xk;µ) =

∫
Sp−1

gk,k−1(x
T
k xk−1)gk−1(µ

Txk−1; )dxk−1.

According to (5), we recognize the following convolution on the
double coset: f(xk;µ) = (gk,k−1 ?µ gk−1)(xk). Thus f(xk;µ)
is also symmetrical about µ according to property i). As gk−1 is as-
sumed to be a k−1-fold convolution, it comes finally by associativity
that f(xk;µ) = (gk,k−1 ?µ · · · ?µ g1,0) (xk), and the inductive
step holds.

The Fourier expansion of the pdf of the isotropic random walk
can be obtained thanks to convolution property ii).

Corollary 2. For all n ≥ 1, the Fourier expansion pdf of the n-step
direction xn ∈ Sp−1 reads

f(xn;µ) =
∑
`≥0

(2`+ 1)

4π
f̂⊗n` P`(µ

Tx), (7)

where in the case where all the steps are identically distributed, the
Fourier coefficients f̂⊗n` are given by

f̂⊗n` = (ĝ`)
n (8)

with ĝ` = E[P`(µ
Tx1)] the Fourier coefficient of the distribution

that governs a random walk step.

Proof. It comes directly from the convolution expression (6) and the
Fourier product property.

2.2. Characteristic function of the multiple scattering process
on S2

The multiple scattering process xt ∈ S2 describes the evolution
of the direction of propagation during a propagatsion in a random
medium. In the time lapse [0, t], the number of scattering events is
given by P [Nt = n] = e−λt(λt)n/n!, and the density of xt takes
the form:

f(xt;µ) = e−λtδµ(xt) +
∑
n≥1

e−λt(λt)n

n!
f⊗n(xt;µ) (9)

where δµ(xt) denotes a mass located in the original direction µ ≡
x0 ∈ S2, and f⊗n(xt;µ) denotes the n-step random walk pdf with
original direction µ. The first term (mass) in (9) is known as the
Beer-Lambert law describing absorption in a medium.

The absolutely continuous part of f(xt;µ) is denoted f⊗>0 =

c0h
⊗>0(xt;µ) where c0 =

(
1− e−λt

)−1
is the normalizing con-

stant of the truncated distribution corresponding to the eventNt > 0
and h⊗>0 is the unnormalized density

h⊗>0(xt;µ) =
∑
n≥1

e−λt(λt)n

n!
f⊗n(xt;µ). (10)

Based on its Fourier expansion

h⊗>0(xt;µ) =
∑
`≥0

(2`+ 1)

4π
ĥ⊗>0

`P`(µ
Txt), (11)

it is finally possible to obtain the Legendre moments of the multiple
scattering process.

Proposition 1. The Legendre moments of the multiple scattering
process express as

f̂` = E
[
P`(µ

Txt)
]
= exp (λt (ĝ` − 1)) , (12)

where the coefficients ĝ` are the Fourier coefficients of the isotropic
and identically distributed random steps.

Proof. Based on the Fourier coefficients of n-fold pdf, orthogonal-
ity of Legendre polynomials, and the contribution of the mass in µ
which reduces to e−λt since P`(µTµ) = P`(1) = 1, the result
comes by straightforward calculation.

Among the possible distributions for the isotropic random steps,
we consider the von Mises-Fisher (vMF) on S2, denoted M3(µ, κ),
due to its importance in directional statistics [7]. This distribution is
defined by the pdf

f(x;µ, κ) =
κ

4π sinh(κ)
eκx

Tµ (13)

for x ∈ S2. The distribution is rotationally symmetric with respect
to its mean direction µ ∈ S2 and κ ≥ 0 is the concentration pa-
rameter. The larger the value of κ, the more concentrated is the
distribution about the mean direction µ. Conversely, when κ = 0
the distribution reduces to the uniform distribution on S2. It is also
known [7] that the Fourier coefficients of the vMF distribution take
the form

ĝ`(κ) = E
[
P`(x

Tµ)
]
=
I`+1/2(κ)

I1/2(κ)
(14)
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for κ > 0 and ` ≥ 0. A multiple scattering process with vMF distri-
bution for the random steps will be called a vMF multiple scattering
process.

3. APPROXIMATE BAYESIAN COMPUTATION

For a known initial direction µ = x0, the vMF multiple scattering
process is governed by the parameter vector θ = (κ, λ), where κ
is the concentration parameter associated with each step, and λ is
the intensity parameter of the Poisson process that models the occur-
rence of scattering events. Note that without loss of generality, we
can assume that the time lapse is t = 1, thus λ ≡ λt stands for the
mean number of scattering events, and x denotes a realization of the
vMF multiple scattering process.

This section addresses now the problem of the inference
of the parameter vector θ from the observations of a dataset
D = (x(1), . . . ,x(n)) that consists of n independent observations
of the vMF multiple scattering process. This problem is challenging
since there is no simple closed form expression for the multiple scat-
tering distribution. Thus, the computation of the likelihood based
on the Fourier expansion (11) raises a too dramatic computational
issue.

Approximate Bayesian computation (ABC) is a popular likelihood-
free method to perform Bayesian inference in situations where the
likelihood function is either intractable, or too expensive to calcu-
late. In the Bayesian paradigm, θ is assumed to be random and its
posterior distribution of interest reads

p(θ|D) =
L(D|θ)π(θ)

p(D)
, (15)

where L(D|θ) is the likelihood of the dataset D, π(θ) is the prior
distribution and p(D) =

∫
L(D|θ)π(θ)dθ is a normalizing con-

stant.
The standard ABC algorithm is a special case of a rejection

method. The parameters are generated from the prior, and a dataset
D′ is then simulated for these parameters. The parameter proposal
is accepted if the simulated dataset D′ is almost identical to the ob-
served sample D. This yields to Algorithm 1 where ρ(D′(m), D)

Algorithm 1: Rejection ABC

for m = 1 . . . N do
Draw θ(m) ∼ π(·)
Simulate D′(m) from the model with parameter θ(m)

Accept θ(m) if ρ(D′(m), D) ≤ ε

is a discrepancy function that measures the similarity between the
simulated dataset D(m) and the observed one D, and ε > 0 is a tol-
erance parameter. This algorithm gives independent draws from the
posterior distribution p(θ|ρ(D′, D) ≤ ε) which approximates the
true posterior p(θ|D) [8]. Note that when ε→ 0, this algorithm be-
comes exact. Therefore, this tolerance ε controls a trade-off between
the acceptance rate of the rejection algorithm, i.e. the computational
cost to obtain a given sample size of accepted proposals θ(m), and
the accuracy of the approximated posterior. In practice, the tolerance
parameter ε is determined as a quantile on observed discrepancy val-
ues ρ(D′(1), D), . . . , ρ(D′(N), D). Basically ε is set to the 1% or
0.1% quantile when the number of proposals is large enough, e.g.
N = 105 or N = 106.

3.1. Summary statistics

When the dataset D = (x(1), . . . ,x(n)) is high dimensional, which
occurs in our case when the sample size n is large, the rejection
algorithm suffer from the curse of dimensionality to compare effi-
ciently the dataset with the simulated one [9]. In such cases, the
comparison between D′ and D is usually performed using summary
statistics to project D onto a lower dimensional space. In fact, us-
ing a representative enough summary statistic should still produce a
good approximation to the posterior distribution for small values of
the tolerance parameter ε.

3.1.1. Method of Moments

We first recall some important results on parameter estimation based
on method of moment methods in a frequentist framework. Con-
sider a function h(·) : Rp → RL and the size L summary statistics
defined as

sn =
1

n

n∑
i=1

h(x(i)),

and denote as

f(θ) ≡ E[sn] = E
[
h(x(1))

]
,

C(θ) ≡ n cov (sn) = cov
(
h(x(1))

)
.

An important result in the framework of method of moments is that
the following positive definite matrix

B(θ) =
(
F (θ)C(θ)−1F (θ)T

)−1

, (16)

where F (θ) is the Jacobian matrix of the function f(θ), provides a
lower bound on the asymptotic mean squared errors of all estimators
θ̂ constructed from the summary statistics sn

lim
n→+∞

nE
[
(θ̂ − θ)2

]
≥ B(θ),

where A ≥ B means that A − B is positive semidefinite [10, 11].
Moreover, this asymptotic lower bound is attained for the general-
ized method of moments estimator defined by minimizing the fol-
lowing non-linear least squares criterion

θ̂GMM = argmin
t

(f(t)− sn)T C(t)−1 (f(t)− sn) . (17)

3.1.2. Choice of the summary statistics

Based on the characteristic function of the distribution of x, the L
first empirical Legendre polynomials seem to be a good choice to
obtain a representative summary statistics. It leads to consider the
following function

h(x) =
(
P1(µ

Tx), . . . , PL(µ
Tx)

)
,

while the summary statistic becomes sn = 1
n

∑n
i=1 h(x

(i)). Note
that the mean value f(θ) of sn is just the vector of the L first Fourier
coefficients defined in (3), whose expression is obtained by combin-
ing (12) and (14) for the vMF multiple scattering process.

Moreover its covariance C(θ) can also be calculated analyti-
cally. In fact, the product of two Legendre polynomials with same
argument expresses as a linear combination of Legendre polynomi-
als (the interested reader is invited to see [12] for the analytical for-
mula). As a consequence, the asymptotic lower bound B(θ) can be
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computed for any value of L and can be used to determine the trade-
off between the efficiency and the dimensionality of the summary
statistics. The Frobenius norm of the lower bound B(θ) is depicted
in Fig. 1 for different values of the statistic size L, and for two val-
ues of the process parameter vector θ = (κ, λ). As expected, the
asymptotic MSEs decrease when the number of Legendre polyno-
mial moments increases. However, a good trade-off can be achieved
when L = 5. Finally, by mimicking the non-linear least squares cri-
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Fig. 1. Frobenius norm of the asymptotic lower boundB(θ) vs num-
ber L of Legendre polynomial moments for different values of θ

terion (17) which is asymptotically optimal, the discrepancy function
used in the ABC algorithm is defined as

ρ(D′, D) ≡ ρ(s′n, sn) =
(
s′n − sn

)T
C(θ)−1 (s′n − sn) , (18)

where θ is the proposed parameter, while s′n is the summary statistic
obtained for the simulated dataset with parameter θ. This leads to
a kind of Bayesian generalized method of moments. However this
methods differs from previous works, see for instance [13, 14] and
references therein, where the posterior is obtained based on some
normal distribution approximation. Such normal approximations are
not required here. Moreover, the main advantage with respect to
method of moments is that the ABC algorithm allows us to estimate
the (approximate) posterior distribution of the parameters. For in-
stance, this yields directly to credible intervals on the parameters to
be inferred.

3.2. Adapted PMC algorithm

In practice, the standard rejection algorithm is very demanding com-
putationally as it requires a large number of runs to sample accu-
rately the parameter space. Several improved versions have been
proposed in the literature to achieve considerable reduction of the
computational burden. One possible improvement consists in per-
forming some local correction to improve the accuracy of the sam-
pled parameters [9]. Some methods embeds the simulation of the
summary statistics in a Markov chain Monte Carlo algorithm [15].
A last family consists in adaptive algorithms to sample the posterior
with sequential Monte-Carlo methods [16, 17, 8]. In this work, we
adopt the population Monte-Carlo (PMC) one proposed in [8] and
adapted in [18] to sequentially approximate the posterior. The out-
line of this algorithm is as follows. In the first step, the parameters
are sampled form the prior as in the rejection Algorithm 1. In the
other steps, the parameters are proposed based on the weighted pa-
rameters accepted in the previous step. The new tolerance level ε
is updated to a quantile α of the discrepancy values accepted in the
previous step. The algorithm stops when the acceptance ratio of the
current step is below a given threshold rmin. In the simulations these
parameters are set to α = 0.1 and rmin = 0.001.

4. SIMULATIONS

Several simulations have been conducted on synthetic dataset in or-
der to evaluate the interest of the proposed method. In these simu-
lations, the dataset are composed of n = 1000 samples x, and the
summary statistic is composed of the L = 5 first Legendre polyno-
mial empirical moments as discussed in section 3.1.2. As no prior
information is assumed to be known in the general case, a vague uni-
form prior is chosen π(θ) ∝ 1Iκ×Iλ(κ, λ), where Iκ = [101, 103]
and Iλ = [10−1, 102].

Fig. 2 shows the marginal posterior density estimates based on
Na = 2200 samples provided by the adapted ABC-PMC algorithm.
The dataset is generated for the parameter values κ = 100 and
λ = 2. In this case, the approximate posterior distribution seems to
be in agreement with the true value of the parameters, which belongs
for instance to the 95% highest posterior density (HPD) credible in-
terval. Moreover, one can see here that this credible interval is well
centered around the frequentist GMM estimator introduced in (17).
Fig. 3 shows the simulation for a larger value of λ (λ = 10). This is
a more difficult inference problem. In fact, when the mean number
of scattering events increases, the distribution of the observation is
less concentrated. In the limit case, the model is not identifiable. As
expected, the marginal posteriors have a larger dispersion. Moreover
one can see that these posteriors are quite asymmetric. In particu-
lar, the frequentist GMM estimator is not centered anymore into the
HPD credible intervals. This emphasizes the interest of the proposed
ABC based algorithm.
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Fig. 2. Density estimates (blue line) based on the ABC-PMC sam-
ples for the vMF multiple scattering process parameters θ = (λ, κ).
True values: κ = 100, λ = 2. Red vertical lines: 95% HPD credible
intervals. Black dotted vertical line: GMM estimate.
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Fig. 3. Density estimates (blue line) based on the ABC-PMC sam-
ples for the vMF multiple scattering process parameters θ = (λ, κ).
True values: κ = 100, λ = 10. Red vertical lines: 95% HPD credi-
ble intervals. Black dotted vertical line: GMM estimate.
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