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ABSTRACT

In this paper, our aim is to investigate the control of bias ac-
cumulation when estimating mutual information from near-
est neighbors non-parametric approach with continuously dis-
tributed random data. Using a multidimensional Taylor series
expansion, a general relationship between the estimation bias
and neighborhood size for plug-in entropy estimator is estab-
lished without any assumption on the data for two different
norms. When applied with the maximum norm, our theoret-
ical analysis explains experimental simulation tests drawn in
existing literature. In the experiments, two different strate-
gies are tested and compared to estimate mutual information
on independent and dependent simulated signals.

Index Terms— Entropy estimation, bias reduction, mu-
tual information, independence test

1. INTRODUCTION

Mutual Information (MI) is a widely used independence mea-
surement, which has received particular attention during the
past few decades. Compared to dependence characterization
based on linear or non-linear correlation, MI is a more general
dependence measure and its estimation is of great importance
when testing the independence between distinct data sources
[1, 2, 3, 4]. However, it remains a tough task while carried out
on finite sample length signals, particularly in the field of neu-
roscience, where getting large amounts of stationary data is
an issue. More precisely, let .X; Y / be a pair of multidimen-
sional random variables with a continuous distribution speci-
fied by a joint probability density pX;Y with marginal densi-
ties pX and pY . The joint and marginal entropies, namely
H.X; Y /, H.X/ and H.Y /, respectively linked to .X; Y /,
X and Y , are defined as H.X; Y / D �E ŒlogpX;Y .X; Y /�,
H.X/ D �E ŒlogpX .X/� and H.Y / D �E ŒlogpY .Y /�.
Mutual information between X and Y is then defined as [5]

I.X; Y / D H.X/CH.Y / �H.X; Y /: (1)

According to (1), MI estimation from n independent occur-
rences zi D .xi ; yi / ofZ D .X; Y / could be simply obtained
by estimating three individual entropies separately and then

summing them. The individual entropies can be estimated by
the following Kozachenko-Leonenko entropy estimator

1H.U / D  .n/ �  .k/C 1

n

nX
iD1

log vi ; (2)

whereU 2 fX; Y; .X; Y /g,  .�/ stands for the digamma func-
tion, n denotes the signal length, k the number of neighbors
and vi is the volume of the ball fu W ku � uik < RU .ui /g

where the radius RU .ui / is equal to the distance value dU .ui /
between the i th data sample ui and its kth nearest neighbor
for a given norm, for instance Euclidean or maximum norm. It
is a natural choice [6] to impose the same number k of neigh-
bors for the estimation of H.X/, H.Y / and H.X; Y /. How-
ever, a recurrent question arises: is it possible to adapt the val-
ues of k to cancel out the bias errors in individual estimations
to avoid adverse accumulations of errors when using alge-
braic summation of the 3 entropy estimations in (1)? To deal
with this question, Kraskov et al. [6] proposed to use a com-
mon neighborhood size RU .ui / for both joint and marginal
spaces, when selecting nearest neighbors. This strategy con-
sisted in fixing the number of neighbors in the joint space SZ
[Z D .X; Y /], then using the resulting distance RZ.zi / as
the neighborhood radius value for both SX and SY . In [6],
through numerical simulations, the effectiveness of this strat-
egy is claimed compared to the case where the same number
of neighbors is imposed when estimating the 3 individual en-
tropies. This strategy has been widely used since and also
extended to the calculation of other information theory func-
tionals, such as divergence [7] or partial mutual information
[8]. The interesting conjecture proposed from numerical re-
sults in [6] leads to write:

E
h3I .X; Y /Ki D 0; iif I .X; Y / D 0; (3)

where 3I .X; Y /K is the MI estimated with the strategy pro-
posed in [6].

In the present work, we propose theoretical arguments to
justify bias cancellation observed experimentally in [6] when
using the strategy mentioned above with the maximum norm
and extend these theoretical developments to the Euclidean
norm.
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2. METHODS AND MATERIALS

2.1. New bias expression for the plug-in entropy estima-
tor

Let us consider a random variable X which takes its values
in RdX . If for any x in RdX , L.x/ stands for a small re-
gion around x, we introduce the Lebesgue measure (volume)
v.x/ D

R
L.x/ dz of L.x/ and the probability density func-

tion pX .x/ attached to the distribution probability of X . In
most existing non-parametric density estimation algorithms,
including either KDE (Kernel Density Estimation) or kNN
(k-Nearest Neighbor), pX .x/ is estimated as

1pX .x/ D
6P ŒX 2 L.x/�

v.x/
D

7R
L.x/ pX .y/dy

v.x/
; (4)

where 6P ŒX 2 L.x/� corresponds to an estimation of the
probability that X belongs to the volume v.x/.

In (4), the estimation 4logpX .x/ of logpX .x/ is currently
built as follows

4logpX .x/ D log 1pX .x/

D log
6P ŒX 2 L.x/�

v.x/

D log

"R
L.x/ pX .y/dy

v.x/
C "

#
;

(5)

where the random estimation error " given by

" D

7R
L.x/ pX .y/dy

v.x/
�

R
L.x/ pX .y/dy

v.x/
: (6)

Note that, using Jensen’s inequality, E
�4logpX .x/

�
D

E
�

log 1pX .x/
�
� log E

�1pX .x/�. So, if we assume thatcpX .x/ is unbiased, it leads to E
�

log 1pX .x/
�
� log .pX .x//.

This last inequality implies that 4logpX .x/ in (5) is a biased
estimation of logpX .x/. In this study, we focus on this source
of bias, and so we assume that 6P ŒX 2 L.x/� is unbiased and
� is zero mean (these last assumptions are realistic, at least
approximately).

From observations Xi (random variables issued from

PX ), the corresponding differential entropy H.X/ can be
estimated as

1H.X/ D �1
n

nX
iD1

4logpX .Xi /; (7)

where n is the number of observed occurrences of X . Then,
when ky � xk is small, a Taylor approximation around x

leads to approximate the probability density pX .y/ by

pX .y/ � pX .x/C

�
@pX .x/

@x

�T
.y � x/

C
1

2
.y � x/T

�
@2pX .x/

@x2

�
.y � x/;

(8)

where the superscript T stands for matrix transposition. We
analyze the bias of 1H.X/ writing

1H.X/ D �1
n

nX
iD1

log 2pX .Xi /

D �
1

n

nX
iD1

log

"R
L.Xi /

pX .y/dy

v.Xi /
C "i

#
:

(9)

Integrating (8) on both sides and dividing by v.x/, we get
(10).

As L.x/ admits x as a center of symmetry for any cho-
sen norm, then

R
L.x/.y � x/dy D 0, and the first order

term on the right hand side of (10) is zero. According to
the fact that tr .ABC/ D tr .CAB/, where tr .�/ stands for
the trace operator, (10) is transformed into (11) (note thatR
L.x/ .y � x/ .y � x/

T dy is a diagonal matrix).

Finally, the estimator 4logpX .x/ of logpX .x/ can be ap-
proximated by (12), where the term

h
1

pX .x/
� "
i

is zero mean.

According to the Taylor expansion of log.�/ function, the
bias BX in 1H.X/ is approximated by the second term in the
right hand side of (12) and could be used as a correcting term
if it was possible to evaluate it. To build the ball L.x/ D
fy W ky � xk � R .x/g, we retain two norms, the Euclidean
norm and the maximum norm resulting respectively in a stan-
dard ball and in a dX dimensional cube. The value R.x/ fixes
respectively the radius of the ball or the half of the edge length
of the cube.
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After calculation, using the Euclidean norm, we get

BX .x/ �
R2.x/

2.dX C 2/
�

1

pX .x/
� tr
�
@2pX .x/

@x2

�
: (13)

Similarly, using the maximum norm distance, we get

BX .x/ �
R2.x/

6
�

1

pX .x/
� tr
�
@2pX .x/

@x2

�
: (14)

2.2. Bias reduction of MI estimator based on the new bias
expression

Considering the i th data point, if the signals X and Y are in-
dependent, i.e., pZ.zi / D pX .xi /pY .yi /, with Z D .X; Y /,
we obtain (15).

Now, if we focus on testing an independence hypothesis
between X and Y , in order to cancel out the bias, we solve

BX .xi /C BY .yi / � BZ.zi / D 0; (16)

with respect to R.xi / and R.yi /. With the Euclidean norm,
it yields to

R.xi / D

s
dX C 2

dZ C 2
�R.zi / and R.yi / D

s
dY C 2

dZ C 2
�R.zi /;

(17)
where R.xi /, R.yi / and R.zi / are the distances used for the
estimation of 2pX .xi /, 2pY .yi / and 2pZ.zi / at the i th point,
dX , dY and dZ are the dimensions of the signals X , Y and Z
respectively. Similarly, using the maximum norm, we obtain

R.xi / D R.zi / and R.yi / D R.zi /: (18)

Until now, no particular form of density estimator was
specified in our bias analysis. In [6], the Kozachenko-
Leonenko estimator [9] is used without calculating the den-
sities for each sample point. However, since  .n/ � log.n/
for large n, (2) is equivalent to

1H.U / D �1
n

nX
iD1

log

 
e .k/

nvi

!
: (19)

Therefore, using (5), (7) and (19), we consider the following
density estimator

2pU .ui / D e .k/

nvi
: (20)

So, (2) can still be considered as an estimator with the same
structure as in (9) and explained under the framework of our
bias analysis.

Finally, (18) and (20) formally confirm (as suggested but
not proved in [6]) that, if X and Y are independent, using the
maximum norm and constraining the values R.xi / and R.yi /
to be equal to R.zi / allow to decrease the bias 2I.X; Y / �
I.X; Y /. (17) extends this result when the Euclidean norm is
used for the 3 individual spaces. Let us mention that (15) no
longer holds if signals X and Y are not independent. In this
case only a part of the bias is a priori expected to be cancelled
out.

To conclude, in the case of independence between X and
Y , MI is estimated by

2I.X; Y / D �1
n

nX
iD1

h
log 2pX .xi /C log 2pY .yi / � log 2pZ.zi /

i
(21)

with an approximately zero bias by fixing R.zi / and properly
defining R.xi / and R.yi / using (17) or (18), where 2pX .xi /,
2pY .yi / and 2pZ.zi / are estimated using (20).

3. SIMULATION RESULTS

To validate our analysis, we generated two independent d -
dimensional signals X and Y , both of them following a zero
mean Gaussian distribution N .0; C/, where C is a Toeplitz
matrix with first line Œ1; ˛; : : : ; ˛d�1�. Clearly, whatever the
value of ˛ 2 Œ0; 1Œ, the theoretical value of the mutual in-
formation I.X; Y / is zero. For our simulations, we used
sequences of n independent samples .Xi ; Yi / ; i D 1; : : : ; n

from the distribution of .X; Y /.
Additionally, in order to briefly investigate the effect of

non-independence on the bias of MI estimation when apply-
ing the different strategies, we replaced the independent pair
.X; Y / by a dependent one, .X; Y1/, where the first coordinate
X is the same as previously and Y is replaced by

Y1 D cos � �X C sin � � Y: (22)

The parameter � , � 2
�
0; �

2

�
, allows to tune the dependence

between X and Y1, since it modifies the cross covariance ma-
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(b) Mutual information ÷I.X;Y / (in nats) estimated with different sig-
nals lengths, ˛ D 0:3, d D 3.
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Fig. 1. Mutual information ◊�I.X; Y / estimation for indepen-
dent signals using different strategies with 100 trials.

trix CX;Y1
(CX;Y1

D cos � �C) whereas the marginal covariance
matrices CX and CY1

remain unchanged (CX D CY1
D C).

Note that, for � D �
2

, X and Y1 are independent. The theo-
retical value of I.X; Y1/ is equal to �d log .sin �/.

We tested the 2 different strategies to estimate mutual in-
formation either with the maximum norm or the Euclidean

pi/4 5*pi/16 3*pi/8 7*pi/16 pi/2

−0.2

0

0.2

0.4

0.6

0.8

1

θ

M
ut

ua
l I

nf
or

m
at

io
n

 

 
Theoretical value
Max. norm with same k
Euclid. norm with same k
Max. norm with (18)
Euclid. norm with (17)

Fig. 2. Mutual information ÿ�I.X; Y1/ (in nats) estimation us-
ing different strategies with varying � , ˛ D 0:4, d D 3,
n D 512, 100 trials.

norm: (i) we imposed the same number of neighbors k for the
3 individual entropies, (ii) we determined R.zi / from k, and
then derived R.xi / and R.yi / using (17) or (18). Throughout
the experimentation, k was fixed to 6 and the statistical mean
and variance of the different estimators were estimated by an
averaging on 100 trials.

Fig. 1 displays the performance of both approaches in
the independence case with the two norms (maximum and
Euclidean norms). For the estimators using the same k, the
performance drastically falls with larger ˛ (Fig. 1(a)), shorter
signal length (Fig. 1(b)) and higher dimension (Fig. 1(c)).
The estimators with chosen neighborhood size clearly outper-
form the former significantly whatever the norm, in terms of
estimation bias and standard deviation. In other words, the
new justified strategy provides reliable mutual information
values for independence test, even with short signal lengths or
high dimensional signals. As for dependent signals, (model
(22)), results are displayed in Fig. 2. Here again, the sec-
ond strategy is preferred: whatever the norm, mutual infor-
mation is properly estimated, the experimental values being
very close to the theoretical one. Of course, this approach
provides the best performance when the dependence between
the signals decreases (� close to �

2
).

4. CONCLUSION

In this paper, we investigated the difficult issue of bias reduc-
tion on mutual information estimation. To this end, we estab-
lished a relation between the systematic bias and the distance
parameter for plug-in entropy estimator. Experimental results
allowed us to assess the performance of the novel strategy us-
ing either Euclidean or maximum norm to get a more accurate
estimation of mutual information for independent signals. A
preliminary study also reveals its interest in the dependence
case and will be further investigated.
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