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ABSTRACT

The model-based expectation maximization source sep-
aration and localization (MESSL) technique is a probabilis-
tic time-frequency masking algorithm that achieves underde-
termined blind source separation of speech sources. Using
only two-channel recordings, MESSL clusters spectrogram
points based on their interaural spatial cues. Gaussian mix-
ture models (GMMs) are assumed for the interaural cues and
their corresponding parameters are determined by maximum
likelihood estimation (MLE) via the expectation maximiza-
tion (EM) framework. However, the presence of singularities
and over-fitting are major drawbacks of MLE. In this paper,
we investigate variational Bayesian (VB) inference for clus-
tering spectrogram points based particularly on their interau-
ral phase difference (IPD) cues. Variational inference over-
comes the difficulties associated with the likelihood optimiza-
tion and improves the separation especially when the sources
are in close proximity. Simulation studies based on speech
mixtures formed from the TIMIT database confirm the advan-
tage of the proposed approach in terms of signal to distortion
ratio (SDR).

Index Terms— Blind source separation, time-frequency
masking, Gaussian mixture models, expectation-maximization,
variational Bayesian inference;

1. INTRODUCTION

Amazingly, humans manage to selectively recognize the
utterance of one speaker usually in the presence of other in-
terfering speakers, background noise and music. The cocktail
party problem (CPP) proposed by Colin Cherry [1] refers
to this psychoacoustic phenomenon. For the last decades,
numerous efforts [2] were dedicated to unveil the mystery
of the human auditory perception capability especially with
the growing number of applications requiring speech-based
human machine interfaces (HMIs). Many models in the field
of blind source separation (BSS) have emerged to tackle
the cocktail party problem such as independent component
analysis (ICA) [3] and independent vector analysis (IVA)
[4]. These approaches exploit the statistical independence

of the speech sources to achieve frequency domain convolu-
tive blind source separation (FDCBSS) basically using linear
transformations. Linear filtering commonly involving mixing
matrix pseudo-inversion works well only when the number
of sensors (microphones) is greater or equal to the number
of sources [5]. However, when the number of sensors is
less than the number of sources (underdetermined or over-
complete case), direct estimation of sources becomes more
appropriate and is usually achieved by non-linear techniques
such as time-frequency (T-F) masking [6] or the line orienta-
tion separation technique (LOST) [7].
Originated in the field of computational auditory scene anal-
ysis (CASA) [8], T-F masking approaches exploit the sparse-
ness that acoustic signals exhibit in the time-frequency rep-
resentation. This property referred to as W-disjoint orthog-
onality [9] assumes that most of the energy at each T-F or
spectrogram point belongs to a single source. MESSL de-
scribed in [6] is a probabilistic T-F masking based technique
that separates multiple sound sources from only two channel
recordings in the presence of reverberation and noise. It com-
bines the interaural spatial cues that humans use for localizing
with the missing data approach [10] for speech recognition.
The interaural cues of each speech source at each T-F point
are independently modelled using Gaussian mixture mod-
els (GMMs). The parameters of the models and the regions
that best fit each model are evaluated using the expectation
maximization (EM) algorithm and as a by-product MESSL
generates soft probabilistic spectrogram masks for separating
individual speech sources. In MESSL, localization is used
to initialize the algorithm and the separation performance is
mostly dependent on the modelling of the interaural cues and
the clustering framework.
In [11], [12] we exploited an alternative modelling of the
interaural cues based on the Student’s t-distribution and the
GMMs were replaced by Student’s t-distribution mixture
models (SMMs). Due to its heavy tail behaviour, the Stu-
dent’s t-distribution is known to be less sensitive to outlier
values and experimental results have confirmed a significant
improvement in the average separation performance through
the resulting non-Gaussian based robust clustering. In this
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paper, we propose the use of VB inference as an alternative
to MLE for the same GMMs employed in MESSL. The paper
is organized as follows: In Section 2, the EM framework
employed in MESSL for clustering IPD GMMs is introduced
and the limitations of the likelihood optimization are ex-
plained. In Section 3, the variational inference is thoroughly
described. Experimental results are shown in Section 4 and fi-
nally the relation to prior work is further discussed in Section
5.

2. IPD GAUSSIAN MIXTURE MODELS

MESSL attempts to mimic the sound separation abilities of
the human auditory system and hence uses similar cues for
localizing sound sources such as the interaural time, phase
and level differences. Following [9], we assume that L(ω, t)
and R(ω, t) are the spectrograms of the mixture signals ar-
riving at two spatially distinct microphones and the interaural
spectrogram can be expressed as

L(ω, t)

R(ω, t)
= 10α(ω,t)/20ejφ(ω,t) (1)

where φ(ω, t) and α(ω, t) denote the interaural phase differ-
ence (IPD) and the interaural level difference (ILD) measured
in dB, respectively. ILD results from the shadowing of the
far ear by the head for sounds typically above 3-4 kHz. On
the other hand, IPD conveys information about the azimuthal
location of a sound source. In order to avoid ambiguities and
phase circularity [9], the phase residual φ̂(ω, t; τ) expressed
as

φ̂(ω, t; τ) = arg
(
ejφ(ω,t)e−jωτ(ω)

)
(2)

is used instead of φ(ω, t). It can be modelled approximately
by a Gaussian distribution N (φ̂(ω, t; τ)|ξ(ω), σ2(ω)) with
mean ξ(ω) and variance σ2(ω) [9]. Based on the W-disjoint
orthogonality [9], each spectrogram point belongs only to a
source i and delay τ(w). The delay is expressed as

τ(ω) = τ + ω−1ξ(ω) (3)

where τ is a discrete random variable used for localization
while the parameter ξ(ω) is varying randomly with frequency
in the interval (−π, π). Although the number of sources
is assumed known, the source i dominating each spectro-
gram point, as well as the delay τ , are latent variables. Both
hidden variables can however be combined into one latent
variable ziτ (w, t). This parameter is equal to one with a
corresponding probability ψiτ , if the spectrogram point be-
longs to source i and delay τ and zero otherwise. In other
words, ziτ (ω, t) ∈ {0, 1} and

∑
i,τ ziτ (ω, t) = 1. Let

Θ ≡ {ξiτ (ω), σ2
iτ (ω), ψiτ} denote the set of the parameters

of the models. The likelihood for a given observation can be
expressed as

L(Θ) =
∑
ω,t

log
∑
i,τ

[N (φ̂(ω, t; τ)|ξiτ (ω), σ2
iτ (ω).ψiτ ] (4)

The above equation represents the log-likelihood of the
GMMs with one Gaussian per (i, τ) combination and ψiτ
as the mixing weights. The parameters of each model can be
determined using the iterative EM algorithm involving two
steps. In the E step, the expectations of the latent variable
ziτ (ω, t) denoted by riτ (ω, t) are computed given the cur-
rent observations and the parameters estimates. These values
are then used in the M step to maximize the log-likelihood
and re-estimate Θ. In addition to the model parameters,
MESSL generates probabilistic masks for each of the sources
expressed as

Mi(ω, t) ≡
∑
τ

riτ (ω, t) (5)

The major problem with the EM algorithm is the potential
unbounded property of the likelihood [19]. In other words, if
one component has its mean exactly equal to one of the data
points, its contribution to the likehood function can be written
as

N (φ̂(ω, t)|ξiτ (ω), σ2
iτ (ω)) =

1

(2π)1/2

1

σiτ (ω)
(6)

as σiτ (ω) tends to 0, the likelihood function tends to infin-
ity. These singularities will always occur whenever one of the
Gaussian components collapses onto a data point. Detection
of such singularities and avoiding them is crucial when adopt-
ing MLE [13]. This difficulty does not occur if a VB approach
is employed.

3. VARIATIONAL INFERENCE FOR GAUSSIAN
MIXTURE MODELS

In contrast to MLE, in a VB approach, the parameters are
also treated as random variables and prior distributions are
imposed on these parameters. For each observation φ̂(ω, t; τ),
there is corresponding binary vector z(ω, t) comprising the
elements ziτ (ω, t), and the prior distribution of Z given the
mixing weights can be written in the form

p(Z|ψ) =
∏
t

∏
i,τ

ψiτ (ω)ziτ (ω,t) (7)

where Z = {z(ω, t)} and ψ = {ψiτ (ω)}. The number of
the latent variables z(ω, t) increases with the size of the data
set. However, the size of the parameters is fixed independent
of the data size. For analytical simplicity, conjugate prior dis-
tributions are considered for modelling the parameters [13].
Hence, at each frequency ψ can be modelled by the Dirichlet
density

p(ψ) = Dir(ψ|α0) = C(α0)
∏
iτ

ψα0−1
iτ (8)

where α0 is the distribution parameter assumed to be the same
for all components and C(α0) is the normalization constant.
At each frequency, the mean and the precision parameters are
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modelled by a Gaussian-Wishart prior (namely the conjugate
of a Gaussian distribution) given by

p(ξ,λ) = p(ξ|λ)p(λ) (9)

=
∏
iτ

N (ξiτ |m0, (β0λiτ )−1W(λiτ |w0, ν0) (10)

where λiτ denotes the inverse of the variance, ξ = {ξiτ},
λ = {λiτ} and m0, β0, w0, ν0 are the Gaussian-Wishart
distribution parameters [13]. m0 is chosen to be equal to
the mean of the data [14] and hence is frequency dependent
whereas β0, w0 and ν0 are frequency independent and fixed
a priori. All the Gaussian-Wishart hyperparameters are as-
sumed equal for all components. Our goal is the estimation
of the posterior distributions of all the hidden variables given
the data set. This would be approximated by a distribution
q∗(Z,ψ, ξ,λ) minimizing the Kullback-Leibler divergence
functional [13] and satisfying the only assumption of the vari-
ational inference, namely

q∗(Z,ψ, ξ,λ) = q∗(Z)q∗(ψ)q∗(ξ,λ) (11)

The optimal distributions q∗(Z), q∗(ψ) and q∗(ξ,λ) have the
same functional form as their priors [13]. Similarly to the
EM algorithm, these variational posterior distributions are ob-
tained in two steps. In the E-step, the current distributions are
used to evaluateE[ziτ (ω, t)] followed by the M-step in which
the parameters of the distributions are recomputed given the
expected value of ziτ (ω, t). Within the E-step, the expected
value riτ (ω, t) is computed as follows

riτ (ω, t) =
ρiτ (ω, t)∑
iτ ρiτ (ω, t)

(12)

where

ln ρiτ (ω, t) = E[lnψiτ (ω)] +
1

2
E[lnλiτ (ω)]− 1

2
ln(2π)

− 1

2
Eξiτ ,λiτ [

(
φ̂(ω, t; τ)− ξiτ (ω)

)2
]

(13)

The following three statistics related to riτ (ω, t) are defined
as

Niτ (ω) =
∑
t

riτ (ω, t) (14)

φ̄iτ (ω) =
1

Niτ (ω)

∑
t

φ̂(ω, t; τ)riτ (ω, t) (15)

Siτ(ω) =
1

Niτ (ω)

∑
t

(
(φ̂(ω, t; τ)− φ̄iτ (ω))2riτ (ω, t)

)
(16)

and are used in the evaluation of the parameters of the varia-
tional posterior distributions in the M step as follows,

αiτ (ω) = α0 +Niτ (ω) (17)

βiτ (ω) = β0 +Niτ (ω) (18)

miτ (ω) =
1

βiτ (ω)
(β0m0(w) +Nkφ̄iτ (ω)) (19)

wiτ (ω)−1 = w−1
0 +Niτ (ω)Siτ (ω)

+
β0Niτ (ω)

β0 +Niτ (ω)
(φ̄iτ (ω)−m0)2

(20)

νiτ (ω) = ν0 +Niτ (ω) (21)

where αiτ (ω) is the parameter of the updated Dirichlet disti-
bution q∗(ψ) and βiτ (ω), miτ (ω), wiτ (ω) and νiτ (ω) define
the parameters of the updated Gaussian-Wishart distribution.

These parameters are then used to compute the set of ex-
pectationsE[lnψiτ (ω)],E[lnλiτ (ω)] andEξiτ ,λiτ [(φ̂(ω, t; τ)−
ξiτ (ω))2] required for estimating riτ (ω, t)

Eξiτ ,λiτ [
(
φ̂(ω, t; τ)− ξiτ (ω)

)2
] = 1/βiτ (ω)

+ νiτ (ω)
(
φ̂(ω, t; τ)−miτ (ω)

)2

wiτ (ω)
(22)

E[lnλiτ (ω)] = ψ
(νiτ (ω)

2

)
+ ln 2 + lnwiτ (ω) (23)

E[lnψiτ (ω)] = ψ(αiτ (ω))− ψ
(∑

iτ

αiτ (ω)
)

(24)

where ψ(.) is the digamma function [13]. After convergence,
the values riτ (w, t) are used to compute the masks as in-
dicated in equation (5). Initialization of riτ (w, t) follows
MESSL [9]. Estimates of τ for each source are determined
using the Phase Transform (PHAT) [15]. ψiτ is then assumed
initially to have a Gaussian distribution with its mean located
at each cross correlation maximum and a standard deviation
of one sample. The first E-step is calculated assuming zero
means and unit variances followed by the M-step, these two
steps are repeated until convergence.

4. EXPERIMENTAL RESULTS

In these simulations, we randomly chose different speech sig-
nals from the whole TIMIT database [16]. Each signal is 2.5 s
long. These signals were normalized and convolved with real
binaural impulse responses recorded at a reverberation time
RT60≈ 565 ms [17]. The sampling frequency was 8kHz. The
target was always directed in the front of the microphones and
since we are interested in the case where sources are in close
proximity, three different azimuthal positions for the inter-
ferer were tested [15◦, 30◦, 45◦], in the case of two speakers.
In the three-speaker case, the second interferer is located sym-
metrically with the same azimuth. All speech sources are lo-
cated at a distance of 1 m from the center of the microphones.
The separation performance was evaluated objectively by the
signal-to-distortion ratio (SDR) [18]. Let ΘΩ denote the com-
plexity in which IPD parameters vary with the frequency. In
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MESSL, this complexity results in a better separation than the
frequency independent version but requires a bootstrapping
approach to avoid local maxima [9]. Our approach also as-
sumes frequency dependent parameters with less complexity
as no bootstrapping is required [19]. The set of hyperparam-
eters can be fixed a priori or can be inferred from the data.
In our experiments, β0 and m0(ω) were set following [14],
where β0 = 0.01, m0(ω) is equal to the mean of the data at
each frequency and ν0 was chosen empirically equal to 20 as
smaller values resulted in slower convergence. The Dirich-
let distribution hyperparameter α0 plays an important role in
variational clustering as it can be seen as the effective prior
number of observations associated with each component [13].
Solutions obtained for α0 < 1 correspond to the case where
more mixing coefficients are equal to zero which better de-
scribes our problem. Individual SDRs obtained for five mix-
tures using our proposed approach with different values of α0

are shown in Table 1 and Table 2. Poor choice of prior distri-
bution might affect the effectiveness of the VB approach as in-
dicated in Table 2, where α0 = 10 and the average SDRs have
been reduced by 0.9 dB, 1.1 dB and 1.2 dB for the three az-
imuthal separation angles respectively. We randomly formed

Table 1: SDR (dB) proposed approach ΘΩ, α0 = 0.1

Azimuth angles 15◦ 30◦ 45◦

mix1 2.53 3.49 2.79
mix2 3.57 3.1 5.1
mix3 3.55 3.99 4.95
mix4 3.16 3.08 3.3
mix5 2.98 2.17 3.35
Average 3.16 3.16 3.9

Table 2: SDR (dB) proposed approach ΘΩ, α0 = 10

Azimuth angles 15◦ 30◦ 45◦

mix1 1.43 2.62 1.5
mix2 2.62 2.37 4.29
mix3 2.9 2.99 4.04
mix4 1.97 1.09 1.54
mix5 2.31 1.01 2.05
Average 2.24 2.01 2.68

10 different mixtures in total from the TIMIT database and
the average SDR results comparing our approach (α0 = 0.1)
with two versions of MESSL are shown in Table 3 and Ta-
ble 4 for two and three speakers, respectively. It can be seen
that adding ILD cues for small separation angles does not im-
prove the separation which is expected since both spatial cues
get more similar as the sources move closer [9]. On the other
hand, exploiting VB clustering framework improves the es-
timation of the parameters of IPD cues for sources in close
proximity, resulting in more accurate masks and a better sep-

aration. The average SDR improvement of the proposed ap-
proach decreases with the azimuthal separation. For the two-
speaker case, the average SDR improvements obtained using
the variational approach are 1.2 dB, 0.8 dB and 0.5 dB com-
pared to the first version of MESSL. Whereas, compared to
the second version MESSL IPD-ILD, the average SDR im-
provements obtained are 1.7 dB, 1.2 dB and 0.7 dB for the
three azimuthal angles respectively. In Table 4, for the case
of three speakers these improvements increased to 1.5 dB, 1.1
dB and 0.9 dB compared to the first version and 1.9 dB, 1.2
dB and 0.8 dB compared to the second version.

Table 3: Separation performance comparison in terms of
average SDR (dB) for the two-speaker case

Azimuth angles 15◦ 30◦ 45◦

MESSL IPD 2.38 2.62 3.67
MESSL IPD-ILD 1.92 2.22 3.47
Variational IPD 3.61 3.42 4.13

Table 4: Separation performance comparison in terms of
average SDR (dB) for the three-speaker case

Azimuth angles 15◦ 30◦ 45◦

MESSL IPD -0.67 0.09 2.11
MESSL IPD-ILD -1.15 -0.02 2.22
Variational IPD 0.8 1.22 2.97

5. RELATION TO PRIOR WORK

The state-of-the-art model-based expectation maximization
source separation and localization (MESSL) algorithm sep-
arates successfully multiple sound sources from only two-
channel reverberant mixtures. In this paper, we improved
the MESSL clustering framework by exploiting variational
Bayesian inference as an alternative to the likelihood max-
imization approach. The proposed framework is used for
clustering spectrogram points based on their interaural phase
difference (IPD) cues. This elegant approach overcomes the
drawbacks of the popular EM for GMMs as it avoids over-
fitting and the presence of singularities associated with the
likelihood optimization without requiring additional exten-
sive computations. More importantly, with proper initializa-
tion and careful choice of hyperparameters values, experi-
mental results confirmed an improvement of the separation
performance particularly for small separation angles. Future
work will consider integrating the robust clustering result-
ing from the non-Gaussian modelling within the variational
Bayesian framework to cluster the spectrogram points based
on both interaural phase and level difference cues. The vari-
ational approach might also be used to determine the number
of active speech sources.
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