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1GIPSA-Lab, 11 rue des Mathematiques F-38402 Saint Martin d’Hères cedex, France
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ABSTRACT

The Canonical Polyadic (CP) tensor decomposition has
become an attractive mathematical tool these last ten years
in various fields. Yet, efficient algorithms are still lacking
to compute the full CP decomposition, whereas rank-one
approximations are rather easy to compute. We propose a
new deflation-based iterative algorithm allowing to compute
the full CP decomposition, by resorting only to rank-one ap-
proximations. An analysis of convergence issues is included,
as well as computer experiments. Our theoretical and ex-
perimental results show that the algorithm converges almost
surely.

Index Terms— Deflation; rank-one approximations;
Canonical Polyadic; CanDecomp; Parafac; tensor decom-
position; convergence

1. INTRODUCTION

Tensors play an important role in many applications such as
chemometrics [1], blind source separation [2], data mining
[3] and telecommunications [4]. The interest in resorting to
tensors, compared to more standard matrix-based approaches,
lies in the uniqueness of their decomposition into rank-one
terms, now referred to as CP decomposition [5]. There ex-
ist iterative algorithms allowing to compute the CP decom-
position, but none of them is entirely satisfactory. The most
widely used is the Alternating Least Squares (ALS) [1], which
is a simple iterative method that updates alternately the factor
matrices of the CP decomposition. Note that the local con-
vergence of ALS can be long, and that global convergence
is not guaranteed [6, 7, 8]. There exist other iterative meth-
ods, namely those based on all-at-once estimation of the fac-
tor matrices, such as the Conjugate Gradient and Levenberg-
Marquardt methods [9, 8]. Hierarchical methods as described
in [10] and [11] can be also used. In the former, the authors
use a hierarchical ALS method only for decomposing non-
negative tensors. Moreover, the performance of the algorithm
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strongly depends on initializations and the updates are made
column-wise, which can be expensive. In the latter, the au-
thors propose an interesting finite deflation algorithm, but this
procedure only works when the rank of the tensor does not
exceed the tensor dimensions. For both algorithms, no con-
vergence study has been performed.

Since rank-one tensor approximations are easier to com-
pute, one can be tempted by a deflation procedure, which con-
sists of computing successive rank-one approximations fol-
lowed by subtractions. The conventional deflation works well
for matrices, but does not generally provide satisfactory re-
sults for tensors, as pointed out in [12]. In [10], the hierar-
chical algorithm is iterative and still based on deflations, but
is implemented with care. The algorithm we proposed in this
paper is based on similar ideas, and allows to exactly compute
the CP decomposition by means of rank-one approximations
only. The core of the paper is the analysis of convergence,
showing that the CP decomposition is obtained almost surely.
Our analysis is also corroborated by means of numerical ex-
amples.

The paper is organized as follows. In Section 2, rank-one
approximation algorithms are presented. In Section 3, we de-
scribe our deflation algorithm. In Section 4 we discuss some
issues about global convergence. Finally, computer results are
reported in Section 5.

The notation employed is as follows: scalars are denoted
by lowercase letters. We use calligraphic letters for tensors,
boldface capital letters for matrices and boldface lowercase
letters for vectors. Lastly, dimensions of tensors, matrices or
vectors are denoted with plain capitals.

2. RANK-ONE APPROXIMATION

Let K denote the real or the complex field, and T be a tensor
in K

I1×I2×···×IN . The best rank-one approximation is de-
noted φ(T ), and is formulated by the optimization problem:

φ(T ) = argmin
X

‖T −X‖2F

s.t. rank{X} = 1
(1)

This problem always has a solution because the set of
rank-one tensors is known to be closed [13]. However, there is
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no algebraic method to find the exact solution to this problem,
even if there exist efficient algorithms. For practical purposes,
we shall now review four possible ways to estimate the best
rank-one approximation. (i) First, the ALS algorithm is an
option that guarantees global convergence for generic tensors
in this case [14]. (ii) Another way to obtain a good estimate
of the best rank-one approximation is based on truncating
the higher order singular value decomposition (T-HOSVD); a
rank-one approximation is constructed from the first column
of each factor matrix [15]. The complexity in terms of num-
ber of multiplications can be reduced to O(2Nk

∏N
j=1 Ij), by

using a Lanczos algorithm running with a number k of steps
[16]. In practice, taking k equal to 3 or 4 is enough. In the
case of rank-one approximations, rank and multilinear rank
indeed coincide. (iii) A third way is to compute the dominant
singular triplet of a sequence of tensors of decreasing order.
(iv) Lastly, one can improve the previous approach by also
computing orthogonal projections of a sequence of unfolding
tensors of increasing order. The two latter procedures are our
proposals and they are described below.

ALGORITHM SEROA
(Sequential Rank-One Approximation)

The algorithm proceeds in N − 1 steps, for a N th order ten-
sor.
Step 1: unfold tensor T into a matrix T(1) of size I1 ×

I2I3 . . . IN and compute its SVD as T(1) = U(1)Σ(1)V(1)H.
Set the dominant left singular vector u1 as the 1st mode of
X .
Step n, 1 < n < N − 1: reshape the dominant right singular

vector of T(n−1)into a matrix T(n) of size In × In+1 . . . IN ,
and set the dominant left singular vector un of T(n) as the
nth mode of X .
Step N − 1: reshape the dominant right singular vector of

T(N−2) into a IN−1 × IN matrix T(N−1). Set the dominant
left and right singular vectors to uN−1 and uN , respectively.

The output is a suboptimal rank-one approximation X =
φ̂(T ) = λ ·⊗N

n=1un, with λ = 〈T ,⊗N
n=1un〉.

The complexity is given by O(2k
∑N−2

i=1

∏N
j=i Ij).

ALGORITHM SEROAP
(Sequential Rank-One Approximation and Projection)

The algorithm proceeds in 2N − 4 steps, for a N th order ten-
sor.

1. Order Reduction-Fitting Phase:
Step n, 1 ≤ n < N − 2: reshape the dominant right sin-

gular vector of T(n) into a matrix T(n+1) of size In+1 ×
In+2 . . . IN , and compute its SVD as T(n+1) = U(n+1)Σ(n+1)

V(n+1)H.
Step N − 2: reshape the dominant right singular vector of

T(N−2) into a IN−1 × IN matrix T(N−1), and compute
its SVD as T(N−1) = U(N−1)Σ(N−1)V(N−1)H. Define

wN−1 = vN−1 ⊗ uN−1 as the Kronecker product between
the dominant right and left singular vectors of T(N−1).

2. Order Increase-Projection Phase:
Step n, 1 ≤ n ≤ N − 2: define the matrix W(N−n+1) of
size IN−n−1 × IN−n . . . IN , whose rows are the orthogonal
projections of the rows of T(N−n−1) onto wN−n. Reshape
W(N−n+1) into a vector wN−n+1.

The matrix W(1) is the mode-1 unfolding of a suboptimal
rank-one approximation X = φ̂(T ) = W .

The complexity is O(2(k + 1)
∑N−2

i=1

∏N
j=i Ij).

Remarks
1. In algorithms SeROA and SeROAP, dimensions can be per-
muted before proceeding. In particular, it can be attractive to
choose I1 to be the largest dimension, and to sort them in de-
creasing order.
2. For higher dimensions and small order, the computational
complexity of SeROA and SeROAP are smaller than that of
the algorithm based on T-HOSVD, since the tensor order, and
hence the dimensions of the associated unfolding matrices,
decrease at each step.
3. T-HOSVD, SeROA and SeROAP algorithms terminate af-
ter a finite number of steps, whereas the ALS algorithm ex-
hibits an unbounded complexity. For this reason, we do not
consider ALS in the remainder.

3. COMPLETE EXACT CP DECOMPOSITION

In this section, we present the deflation-based CP decompo-
sition Algorithm (DCPD), which calculates the exact CP ten-
sor decomposition for general tensors. The algorithm follows
the idea behind the solution described in [10] with the dif-
ference that each rank-one component is calculated directly
using rank-one approximation procedures (1).

input : T ∈ K
I1×I2×···×IN : input data,

R: rank parameter.

output: X 1, . . . ,XR ∈ K
I1×I2×···×IN : rank-one

components, and E ∈ K
I1×I2×···×IN : residue

tensor.

Y ← T ;

for r = 1 to R do

X r = φ(Y);
Y = Y −X r;

end

E ← Y;

repeat

for r = 1 to R do
Y ← X r + E;
X r ← φ(Y);
E ← Y −X r;

end

until some stopping criterion is satisfied;

Algorithm 1: DCPD algorithm
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The algorithm works as follows. In the initialization
phase (first for loop), R rank-one components X 1, . . . ,XR

are computed by successive rank-one approximations and
subtractions. Since subtraction of a best rank-one approxima-
tion does not generally decrease tensor rank [12], there is a
residue denoted by E .

Then an iterative process starts. A first rank-one compo-
nent is generated from the sum of that residue and tensor X 1.
A new residue is generated and added to the second rank-one
component. The procedure continues until all the remaining
rank-one components are updated and a new residue E is gen-
erated in the end of the second for loop. The repeat loop con-
tinues until some stopping criteria are satisfied. We have an
exact tensor decomposition when ‖E‖F ≈ 0. Notice that φ(·)
will have to be replaced by a suboptimal solution φ̂(·), as one
of those described in Section 2.

4. CONVERGENCE ANALYSIS

Some results on global convergence of DCPD using the best
rank-one approximation can be delineated for general tensors.
To start with, let us state some basic theoretical results.

Lemma 4.1 Let X be a rank-one tensor and φ the best rank-

one approximation function. Then, for any tensor E:

‖X + E − φ(X + E)‖F ≤ ‖E‖F . (2)

Proof. By definition, φ(X + E) is a best rank-one ap-
proximation of X + E . In particular, X cannot be a strictly
better rank-one approximation than φ(X + E), which means
that ‖X + E − φ(X + E)‖ ≤ ‖X + E −X‖ = ‖E‖.

Let us look at the implications of equality in (2). To do
that, we need the lemma below.

Lemma 4.2 Let φ(T ) be a best rank-one approximation of a

tensor T . Then ‖T − φ(T )‖2F = ‖T ‖2F − ‖φ(T )‖2F .

Proof. The proof just needs the fact that the set of rank-
one tensors is a linear cone. Any rank-one tensor can be writ-
ten as V = λV̄ where ‖V̄‖ = 1. The best rank-one approx-
imate of T is a stationary point of Υ(λ, V̄) = ‖T − λV̄‖2F .
The cancellation of the derivative ∂Υ/∂λ yields λ‖V̄‖2 −
〈T , V̄〉 = 0, and eventually λ = 〈T , V̄〉. Now plug this back
in the product 〈T −λV̄,λV̄〉 and get λ∗〈T , V̄〉−λλ∗‖V̄‖2 =
0. Hence T −V and V are orthogonal, and the result follows.

Corollary 4.3 Let X be a rank-one tensor and E any general

tensor. If ‖X +E−φ(X +E)‖F = ‖E‖F , then 〈E ,X 〉 = 0.

Proof. By hypothesis, we have ‖X +E−φ(X +E)‖F =
‖X+E−X‖F . This means that X reaches the same minimal

value of the objective as φ(X + E). Hence X is a best rank-
one approximation, and Lemma 4.2 applies, which yields that
X + E −X = E is orthogonal to X .

We are now ready to present the first important proposi-
tion about convergence. In the remainder, we shall denote by
A the DCPD algorithm and E(l) the residue at iteration l (after
the second for loop).

Proposition 4.4 In algorithm A, if function φ is a best rank-

one approximation, then ‖E(l)‖F is a monotonically decreas-

ing sequence.

Proof. Let X (l)
r ,Y(l)

r and E(l)
r be the r-th component

obtained in the second for loop at iteration l of the involved
tensors in A.

We have for 1 < r ≤ R

‖E(l)
r ‖F = ‖Y(l)

r −X (l)
r ‖F

= ‖X (l−1)
r + E

(l)
r−1 − φ(X (l−1)

r + E
(l)
r−1)‖F .

By Lemma 4.1, we conclude that

‖E(l)
r ‖F ≤ ‖E(l)

r−1‖F .

In particular, ‖E(l)
R ‖F ≤ ‖E(l)

1 ‖F .

Yet, by the same lemma, we have in the next iteration of

repeat loop ‖E(l+1)
1 ‖F ≤ ‖E(l)

R ‖F . Thus, it is easy to see that

‖E(l+1)‖F ≤ ‖E(l)‖F (Since E(l) = E
(l)
R ).

Proposition 4.4 does not guarantee that the residue ‖E(l)‖F
converges to zero. Even when ‖E(l+1)‖F < ‖E(l)‖F , for all

l ≥ 1, the sequence ‖E(l)‖F could indeed converge to a
nonzero constant.

Remark 4 Notice that when rank(T ) > R, the residue in

algorithm A never converges to zero.

In order to construct more complete results of conver-
gence, we introduce the following definition:

Definition 4.5 Given a tensor T , A is (δ, R)-convergent if

there exists δ, 0 ≤ δ ≤ 1, such that for all l > 1, ‖E(l+1)‖F ≤
δ‖E(l)‖F .

In the remainder, T will denote the set of all tensors with
entries in K and T(R) = {T ∈ T : rank{T } ≤ R}.

Proposition 4.6 Let tensors T be distributed within T(R) ac-

cording to an absolutely continuous probability measure µ.

Then for any ε > 0 made small enough, there exists δ, 0 ≤
δ < 1, such that algorithm A is (δ, R)-convergent with prob-

ability (1− ε).
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Proof. Define the set S
(R)
δ = {T ∈ T(R) : A is (δ, R)-

convergent for T }, for some 0 ≤ δ ≤ 1. Notice that S
(R)
δ1

⊆

S
(R)
δ2

for δ1 ≤ δ2 and S
(R)
1 = T(R) due to Definition 4.5. Since

T has a continuous distribution, then for any ε > 0 made

small enough, there exists 0 ≤ δ < 1 such that µ(S(R)
δ ) =

1−ε. Thus, after l iterations of repeat loop in A, ‖E(l+1)‖F ≤
δl‖E(1)‖F . Hence ‖E(l+1)‖F → 0, when l → ∞.

5. COMPUTER RESULTS

5.1. Performance of rank-one approximation functions

In this section, we compare the performance of three rank-one
approximation functions, as described in Section 2. The table
below shows the mean and variance of the rank-one approxi-
mation error ‖T − φ̂(T )‖F for a sample of 10000 tensors in
two different scenarios: 3×3×3 rank-3 tensors, and 4×4×4
rank-5 tensors.

Scenario 1 Scenario 2

Algorithm mean variance mean variance

T-HOSVD 0.8560 0.1355 2.3950 0.3733

SeROA 1.6113 0.2629 3.3500 0.4848

SeROAP 0.8226 0.1121 2.2667 0.2786

Due to the poor performance of SeROA, it wont’ be con-
sidered in the next results.

5.2. Performance of DCPD Algorithm

In order to produce satisfactory results with algorithm DCPD,
we have defined the following stopping criteria: (i) | ‖E(l+1)‖F
− ‖E(l)‖F |< 10−10 and (ii) lmax = 10000. For vari-
ous ranges of tensors, we plot the estimation error Eest =

max100k=1 minσ
∑R

r=1 ‖X
[k]
r − X̃

[k]

σ(r)‖F , where X [k]
r and

X̃
[k]

σ(r) are the actual and estimated rth rank-one component
of the tensor generated in the kth experiment, and σ(·) de-
notes a permutation.

10−6

10−5

10−4

10−3

10−2

10−1

100

 

 

SeROAP

T−HOSVD

[2x2x2, R = 2]
[3x3x3, R = 3]
[4x4x4, R = 5]
[6x6x6, R = 8]

E
e
s
t

Fig. 1. Estimation error for DCPD algorithm.

Figure 1 shows the maximum error Eest calculated for
100 random tensors with entries uniformly distributed in [0, 1]
for the following real scenarios: 2× 2× 2 rank-2 tensors, 3×

3×3 rank-3 tensors, 4×4×4 rank-5 tensors, and 6×6×6 rank-
8 tensors. The simulations are performed with both rank-one
approximations: T-HOSVD and SeROAP. Notice that in all
scenarios the Kruskal uniqueness condition [17] is satisfied.

5.3. Example 1: T ∈ R
3×3×3, rank(T ) = 4.

In the example below, the Kruskal condition is not satisfied.
We take the example 3.2 from [11], whose mode-1 unfolding
is given by

T
(1) =




1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1



 .

Here, for both T-HOSVD and SeROAP implementations
of φ(·), the algorithm converges to an exact decomposition in

the first iteration (‖E(1)‖F = 0) in a few milliseconds. The
first for loop in algorithm DCPD is enough to guarantee an
exact solution. Contrary to [11], we do not need a sophisti-
cated algorithm to decompose this tensor.

5.4. Example 2: T ∈ R
6×6×6, rank(T ) = 8.

The residue ‖E(l)‖F is plotted in Figure 2 as a function of
iteration l. It illustrates the rate of convergence of DCPD for
random 6 × 6 × 6 tensors with entries uniformly distributed
in [0, 1].

0 2000 4000 6000 8000 1000010−15

10−10

10−5

100

 

 

SeROAP

T−HOSVD

‖E
(l
)
‖ F

Iteration l

Fig. 2. Convergence rate of 6 × 6 × 6 rank-8 real random
tensors with entries uniformly distributed in [0, 1].

6. CONCLUSION

We proposed an iterative deflation algorithm (DCPD) deliv-
ering an exact CP decomposition of given rank, based on
successive rank-one approximations. Best rank-one approx-
imations are always well-posed and rather easy to compute;
we also proposed two new algorithms with this purpose,
namely SeROA and SeROAP, and compared them to T-
HOSVD. Our main contribution is a proof of convergence
of algorithm DCPD, for a class of tensors of large measure.
Computer experiments run on random tensors of fixed rank
have confirmed our theoretical results.
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